框架结构设计在建筑结构设计中的应用

翟少鹏

九易庄宸科技(集团)股份有限公司 河北 石家庄 050000

摘 要:框架结构由梁和柱刚性连接构成,能承担多种荷载,具有自重轻、空间灵活、抗震性好、施工快等特点,在民用、工业和公共建筑中应用广泛。但存在抗震设计不合理、节点设计有缺陷、材料选择不科学等问题。为此,需优化抗震设计,依据规范选参数、做计算;完善节点设计,分析受力、合理配筋与连接;科学选择材料,根据受力与环境挑选适配材料,严格检测质量并控制成本,保障框架结构建筑安全可靠。

关键词:框架结构设计;建筑结构设计;应用;优化策略

引言:在建筑领域,框架结构作为一种广泛应用的结构体系,凭借其由梁和柱刚性连接构建的特性,在建筑受力中承担竖向与水平荷载,发挥着不可替代的作用。它自重轻、空间布置灵活、抗震性能良好且施工速度快,在民用、工业和公共建筑中均有出色应用。然而,在实际应用中,框架结构设计也面临抗震设计不合理、节点设计有缺陷、材料选择不科学等问题。为充分发挥框架结构的优势,有必要深入探讨其设计要点,并提出针对性的优化策略。

1 框架结构设计的基本概念与特点

框架结构作为建筑领域中广泛应用的一种结构体 系,有着明确的基本概念。它是由梁和柱通过刚性连接 构建而成的骨架结构形式,在建筑受力体系中扮演着关 键角色, 主要依靠梁和柱来承担竖向荷载, 诸如建筑自 身的重力、人员及设备重量等,同时也能够承受水平荷 载,像风荷载、地震作用等。(1)框架结构设计具备 诸多显著特点。首先, 自重较轻是其突出优势之一。与 传统的砌体结构相比,框架结构所采用的材料,如钢筋 混凝土或钢材等,单位体积重量相对较小。这种特性使 得建筑整体重量得到有效减轻, 进而降低了地基基础的 负担,在一定程度上减少了基础工程的造价,同时也增 强了建筑在地质条件复杂地区的适应性。(2)空间布 置极为灵活。框架结构的梁和柱间距能够依据建筑的功 能需求进行合理调整。无论是大型商场中开阔的购物空 间,还是办公楼里多样化的办公区域划分,框架结构都 能轻松实现灵活的空间分隔与布局, 充分满足不同用户 对于建筑空间的多样化使用要求, 为建筑的功能多样化 提供了有力保障。(3)抗震性能良好。在地震发生时, 框架结构能够凭借梁和柱的合理变形来吸收和消耗大量 的地震能量。通过结构的弹塑性变形,将地震力进行分 散和化解,有效减少地震对建筑主体结构的破坏,保障 人员生命安全和建筑的正常使用,尤其适用于地震多发地区的建筑建设。(4)施工速度较快。框架结构的众多构件,如梁、柱等,大多可以在工厂进行标准化预制生产。预制构件在工厂内能够保证较高的生产质量和精度,然后运输到施工现场进行快速组装。这种工业化的生产与施工方式,极大地缩短了施工周期,提高了施工效率,有助于项目早日完工交付使用[1]。

2 框架结构设计在建筑结构设计中的具体应用

2.1 在民用建筑中的应用

在民用建筑领域,框架结构设计凭借其独特优势, 有着极为广泛且成熟的应用,常见于住宅、公寓、办公 楼等多种建筑类型。(1)在住宅建筑方面,框架结构展 现出了强大的适应性。不同家庭对于居住空间有着多样 化的需求, 框架结构的梁、柱体系为空间布局提供了极 大的灵活性。设计师可以根据住户的具体喜好和实际需 求,自由调整房间的大小、形状以及功能分区。比如, 对于有较多家庭成员、需要更多卧室的住户,可将部分 客厅空间合理划分,增设卧室;而对于追求大空间起居 体验的住户,则能打通非承重墙,打造宽敞的客厅与餐 厅一体化空间。(2)在办公楼建筑中,框架结构的优势 同样显著。它能够轻松营造出开阔、通透的办公环境, 这种大空间布局不仅便于各类办公设备的合理摆放,还 能保证人员流动的顺畅性,提高工作效率。而且,随着 企业的不断发展壮大,办公需求也会随之变化。框架结 构的灵活性使得后期对办公区域进行重新划分变得轻而 易举,无需对主体结构进行大规模改动,只需根据新的 功能需求,对内部隔断进行调整即可,大大降低了改造 成本和时间成本。

2.2 在工业建筑中的应用

工业建筑因其特殊的使用功能,对结构的承载能力、稳定性以及空间适应性等方面均有着严苛且较高的

要求。而框架结构设计凭借其卓越的性能,在工业建 筑领域发挥着至关重要的作用,有着极为重要的应用。 (1) 在厂房建筑中,框架结构的优势尽显。工业生产往 往会使用到众多大型机械设备,这些设备重量巨大,且 在运行过程中会产生复杂的动态荷载。框架结构通过合 理的梁、柱布局和可靠的连接方式,能够形成强大的承 载体系,轻松承受大型机械设备的重量以及生产过程中 产生的各类荷载,确保厂房结构的安全稳定。(2)框 架结构还能为厂房内部营造出宽敞、开阔的空间。这种 大空间布局极大地满足了工业生产对货物运输和堆放的 需求,无论是大型货物的装卸,还是原材料与成品的存 储,都能在框架结构所提供的大空间内高效、有序地进 行。(3)工业建筑通常对生产安全有着极高的标准。 框架结构具有良好的抗震性能, 在地震等自然灾害发生 时,能够通过自身的变形吸收和消耗地震能量,减少地 震对厂房结构的破坏,从而保障工业生产在灾害期间及 灾后的安全与连续性, 为工业生产的稳定运行提供坚实 保障。

2.3 在公共建筑中的应用

公共建筑作为城市功能与形象的重要载体,像商 场、体育馆、展览馆等,通常对建筑空间有着独特且严 苛的要求, 往往需要较大的跨度和开阔无阻的空间, 而 框架结构设计凭借其独特优势, 能够出色地满足这些复 杂需求。(1)在商场建筑中,框架结构展现出了极高 的实用性。它能够轻松实现大面积的无柱空间,这一特 性为商家的店铺布局提供了极大的灵活性。商家可以根 据自身经营特色和商品展示需求, 自由划分经营区域, 打造独具个性的购物环境。同时,开阔的无柱空间也极 大地方便了顾客的流动,避免了因柱子遮挡而产生的视 线阻碍和通行不便,有效提升了商场的使用效率和顾客 的购物体验。(2)体育馆和展览馆对空间的要求更为 苛刻。框架结构通过科学合理的梁、柱布置,能够轻松 实现大跨度的设计。在体育馆中,大跨度空间为各类体 育赛事的举办提供了充足的活动场地,满足不同体育项 目的场地需求;在展览馆里,开阔的空间则便于大型展 品的展示和众多参观者的流动观赏,为举办各类大型展 览、文化活动等提供了良好的场地条件, 充分彰显了框 架结构在公共建筑领域的强大适应性和应用价值[2]。

3 框架结构设计在应用中存在的问题

3.1 抗震设计不合理

框架结构本身具备一定程度的抗震性能,其通过 梁、柱等构件的合理连接与协同工作,能够在地震作用 下通过塑性变形来消耗和分散地震能量,从而保障建筑 结构在地震中的安全性与稳定性。然而,在实际的设计实践环节,却存在诸多抗震设计不合理的问题。部分设计师对地震作用的认识不够深入和全面,未能充分考量不同地区地震动的特性、场地条件对地震波的放大或衰减作用等关键因素。在抗震设计参数的选择上,也缺乏严谨性和科学性,例如地震作用计算时采用的地震分组、场地类别、设计地震分组等参数不准确,或者结构抗震等级的确定不合理等。这些不当的设计操作,使得框架结构在遭遇地震时,无法按照预期发挥其抗震性能,结构的承载能力和变形能力难以满足抗震要求,进而给建筑带来严重的安全隐患,威胁到人员的生命安全和财产安全。

3.2 节点设计存在缺陷

框架结构中,节点作为梁和柱相连接的核心部位, 其设计的合理性对于整个结构的稳定性起着决定性作 用。在框架结构的受力体系中,节点需要承担并传递梁 端和柱端传来的复杂内力,包括弯矩、剪力和轴力等, 是结构受力传递的关键枢纽。然而,在实际设计过程 中,部分设计存在明显缺陷。一些设计中,节点的构造 措施缺乏科学性与严谨性,未能充分考虑节点在复杂受 力状态下的力学性能。例如,节点配筋不足,导致钢筋 无法有效抵抗节点区域的应力,使得节点在受力过程中 难以维持其应有的强度和刚度;连接不牢固的情况也时 有发生,可能是连接方式选择不当,或者连接件的质量 不达标,这都会使梁和柱之间的连接可靠性大打折扣。 一旦节点过早破坏,结构的整体承载能力将受到严重影 响,甚至可能引发结构的连续倒塌,给建筑安全带来极 大威胁。

3.3 材料选择不科学

在框架结构设计的复杂体系中,材料选择是关乎工程质量与结构安全的关键环节。框架结构需依靠梁、柱等构件来承受和传递各类荷载,材料性能的优劣直接影响着整个结构的强度、稳定性及耐久性。然而,在实际设计过程中,材料选择不科学的现象时有发生。部分设计方受成本因素驱使,片面追求经济效益,选用质量不合格的建筑材料。这些劣质材料可能存在强度不足、韧性差、抗腐蚀性能弱等问题,无法满足框架结构在复杂受力状态下的性能要求。此外,还有材料性能与设计要求不匹配的情况,如选用的混凝土强度等级过低,无法承受设计荷载;钢筋的力学性能不符合结构抗震需求等。此类不科学的材料选择,会严重削弱框架结构的承载能力与稳定性,加速结构的老化与损坏,进而大幅缩短建筑的使用寿命,给建筑的安全使用埋下重大隐患^[3]。

4 框架结构设计的优化策略

4.1 优化抗震设计

在框架结构设计里, 抗震设计是保障建筑在地震中 安全的关键环节。(1)设计师需全面且深入地考量建筑 所处地区的地震烈度,精准掌握当地地震活动的特征与 规律,以此为抗震设计提供坚实依据。要严格依照国家 及行业现行的相关规范标准开展抗震设计工作,确保设 计的科学性与合规性。(2)在具体设计时,要合理选定 抗震设计参数,如地震影响系数最大值、特征周期等, 这些参数直接影响着结构在地震作用下的受力计算。 为增强框架结构的整体性和延性,可采取一系列有效措 施,例如合理设置剪力墙,利用其较大的抗侧刚度来分 担地震作用;布置暗柱,提高柱子的承载能力和延性。 此外,在设计过程中必须进行详尽的抗震计算和分析, 运用先进的计算软件和理论方法,对结构在不同地震工 况下的内力、变形等进行模拟,确保框架结构在地震作 用下具备足够的安全性,最大程度降低地震灾害对建筑 的破坏。

4.2 完善节点设计

在框架结构设计中,节点作为梁与柱连接的关键部位,其设计的优劣直接关乎整个结构的安全性与稳定性。(1)必须高度重视框架结构节点的设计工作,深入分析节点在不同工况下的受力特点,如承受的弯矩、剪力和轴力等,以此为依据采取科学合理的构造措施。(2)在配筋方面,要严格按照设计要求确定节点的配筋数量和布置方式,保证钢筋能够充分发挥作用,有效抵抗节点区域的应力。同时,加强节点与梁、柱之间的连接强度,可采用合适的连接形式和高质量的连接材料,确保节点能够可靠地传递内力,防止因连接薄弱而导致节点过早破坏。(3)节点施工质量也不容忽视。在施工过程中,要建立严格的质量管控体系,加强对节点施工过程中,要建立严格的质量管控体系,加强对节点施工的监督和检查,确保每一道施工工序都符合设计标准,从而保障框架结构节点的设计意图能够得以完美实现的。

4.3 科学选择材料

在框架结构设计的复杂体系中, 科学合理地选择建

筑材料是保障结构安全与性能的关键前提。(1)设计 人员需依据框架结构的具体受力要求,如梁、柱等构件 所承受的弯矩、剪力和轴力等,以及建筑所处的使用环境,像是否处于潮湿、腐蚀性介质较多的区域,或是经 历较大的温度变化等,来精准挑选适配的建筑材料。 (2)要严格把关材料质量,优先选用质量合格、性能优良的产品,杜绝使用劣质材料。对所选材料的各项性能 指标,如强度、韧性、耐久性等进行严格检测,确保其

良的产品,杜绝使用劣质材料。对所选材料的各项性能指标,如强度、韧性、耐久性等进行严格检测,确保其完全符合设计要求,为框架结构的长期稳定运行奠定基础。(3)在保障结构安全和性能不受影响的前提下,还需合理控制材料成本。通过优化材料选型、批量采购等方式,实现经济效益和社会效益的有机统一,打造出既安全可靠又经济合理的框架结构建筑。

结束语

框架结构设计作为建筑领域的重要结构体系,在民用、工业、公共建筑中均有广泛应用,具备自重轻、空间灵活、抗震好、施工快等优势。然而,在实际应用中,抗震设计不合理、节点设计存在缺陷、材料选择不科学等问题,严重威胁着建筑的安全与稳定。针对这些问题,我们提出优化抗震设计、完善节点设计、科学选择材料等优化策略。通过严格遵循规范、精准分析受力、把控材料质量等措施,可有效提升框架结构设计的科学性与合理性,确保建筑结构在复杂环境下具备足够的安全性与耐久性,为建筑行业的可持续发展提供坚实的技术支撑。

参考文献

- [1] 康乐. 框架结构设计在建筑结构设计中的应用[J]. 中国建筑装饰装修,2022(8):104-106.
- [2] 王光琦. 框架结构设计在建筑结构设计中的应用研究[J]. 模型世界,2022(34):84-86.
- [3] 任晶梅. 框架结构设计在建筑结构设计中的应用研究[J]. 中国住宅设施,2022(11):37-39.
- [4]舒赣平,周雄亮,王小盾,等.新型装配式钢框架结构建筑体系研究与应用[J].建筑钢结构进展,2021,23(10):26-31.