基于多级深度处理的净水厂工艺优化与水质提升研究

王智凯

宁夏水利水电工程局有限公司 宁夏 银川 750000

摘 要:本文聚焦于基于多级深度处理的净水厂工艺优化与水质提升研究。首先阐述了研究背景与意义,强调了当前水质标准提高及水资源污染问题对净水厂工艺的新要求。接着详细介绍了多级深度处理工艺的组成,包括预处理、常规处理、深度处理等环节及其常用技术。通过实际案例分析,对不同工艺组合下的水质净化效果进行评估,找出影响水质的关键因素。进而提出针对性的工艺优化策略,涵盖工艺参数调整、设备改进等方面。最后对优化后的工艺进行水质提升效果验证,结果表明优化后的工艺能显著提高水质,满足更高标准要求,为净水厂工艺改进提供了理论依据与实践参考。

关键词: 多级深度处理; 净水厂工艺优化; 水质提升

1 引言

随着社会经济的快速发展和人口的不断增长,水资源短缺和水污染问题日益严重。人们对饮用水水质的要求也越来越高,各国纷纷制定了更为严格的饮用水水质标准。传统的净水厂处理工艺,如混凝、沉淀、过滤和消毒等,在面对一些新型污染物和复杂水质时,已难以满足高标准的水质要求。因此,探索和应用多级深度处理工艺,对净水厂工艺进行优化,以提升水质,成为当前水处理领域的研究热点。多级深度处理工艺能够去除水中更多的污染物,包括有机物、重金属、微生物等,有效提高饮用水的安全性和可靠性。通过工艺优化,不仅可以提升水质,还能降低处理成本,提高净水厂的运行效率和经济性。此外,该研究对于保障居民的身体健康、促进社会的可持续发展具有重要的现实意义。

2 多级深度处理工艺概述

2.1 预处理工艺

预处理是净水厂处理流程的第一步,其目的是去除水中的大颗粒悬浮物、藻类等,减轻后续处理工艺的负担。常见的预处理技术包括格栅、筛网、预沉池等。格栅和筛网可以拦截水中较大的漂浮物和悬浮物,防止其进入后续处理单元造成堵塞。预沉池则利用重力作用使水中的较大颗粒沉淀下来,降低水的浊度。

2.2 常规处理工艺

常规处理工艺主要包括混凝、沉淀、过滤和消毒等 环节。混凝是通过向水中投加混凝剂,使水中的胶体颗 粒脱稳并聚集形成较大的絮体。沉淀是让絮体在重力作 用下沉淀到池底,从而实现固液分离。过滤则是通过滤 料层进一步去除水中的细小颗粒和悬浮物。消毒是为了 杀灭水中的病原微生物,保证饮用水的卫生安全,常用 的消毒方法有氯消毒、臭氧消毒、紫外线消毒等。

2.3 深度处理工艺

活性炭吸附:活性炭吸附利用活性炭的多孔结构和大比表面积,吸附水中的有机物和异味物质。活性炭分为颗粒活性炭(GAC)和粉末活性炭(PAC)。GAC一般填充在滤池中,滤速为5-10m/h,空床接触时间(EBCT)为10-20min。PAC则直接投加到水中,投加量一般为10-50mg/L。活性炭对水中有机物的去除率可达30%-60%,对异味物质的去除效果显著。

膜分离技术:膜分离技术包括微滤(MF)、超滤(UF)、纳滤(NF)和反渗透(RO)等,能够根据膜孔径的大小截留不同粒径的污染物^[1]。微滤膜的孔径一般为0.1-1μm,主要用于去除水中的悬浮物和细菌;超滤膜的孔径为0.001-0.1μm,可去除水中的大分子有机物、病毒和胶体;纳滤膜的孔径为0.0001-0.001μm,对二价离子和小分子有机物有较好的截留作用;反渗透膜的孔径小于0.0001μm,几乎能截留所有的溶质。以超滤膜为例,其操作压力一般为0.1-0.3MPa,膜通量为50-100L/(m²•h),对水中浊度的去除率可达99%以上,对微生物的截留率接近100%。

高级氧化技术:高级氧化技术如臭氧氧化、芬顿氧化等,通过产生强氧化性的自由基,将水中的有机物氧化分解为小分子物质或二氧化碳和水。臭氧氧化中,臭氧与有机物的反应速率较快,对一些难降解有机物有较好的去除效果^[2]。芬顿氧化是在酸性条件下,向水中投加亚铁离子(Fe²⁺)和过氧化氢(H₂O₂),产生羟基自由基(•OH),其氧化能力极强。芬顿试剂中Fe²⁺的投加量一般为10-50mg/L,报₂O₂的投加量为50-200mg/L,反应时间为30-60min。

3 案例分析

3.1 案例背景

选取某市一座具有代表性的净水厂作为研究对象。 该净水厂原采用常规处理工艺,水源为某河流,原水水 质受工业废水和生活污水排放影响,有机物、氨氮等污 染物含量较高。随着当地水源水质的变化和水质标准的 提高,出水水质难以满足要求。因此,该厂引入了多级 深度处理工艺,包括预臭氧氧化、粉末活性炭吸附、超 滤膜过滤等。

3.2 工艺流程

水源水首先经过格栅和预沉池进行预处理,格栅的栅条间隙为10mm,预沉池采用平流式,停留时间为1.5h。然后进入预臭氧接触池,臭氧投加量为1.5mg/L,接触时间为12min。接着向水中投加粉末活性炭,投加量为30mg/L。之后水进入混凝沉淀池,采用PAC作为混凝剂,投加量为60mg/L,快速搅拌速度为250r/min,时间为2min,慢速搅拌速度为45r/min,时间为15min。沉淀池采用斜管沉淀池,表面负荷为10m³/(m²•h)。再经过超滤膜过滤,超滤膜的操作压力为0.2MPa,膜通量为80L/(m²•h)。最后进行消毒处理,采用氯消毒,氯投加量为2.5mg/L,接触时间为40min,然后进入清水池,通过送水泵房输送到用户。

3.3 水质净化效果评估

在工艺运行过程中,定期对各处理单元的进出水水质进行检测,检测指标包括浊度、COD(化学需氧量)、氨氮、重金属等。具体检测数据如下:

浊度:原水浊度平均为80NTU,经过格栅和预沉池 预处理后,浊度降至40NTU;预臭氧氧化和粉末活性 炭吸附后,浊度降至20NTU;混凝沉淀后,浊度降至 5NTU;超滤膜过滤后,浊度稳定在0.3NTU以下。

COD: 原水COD平均为15mg/L, 预处理后COD去除率约为10%, 降至13.5mg/L; 预臭氧氧化和粉末活性炭吸附组合工艺对COD的去除率可达35%, 降至8.775mg/L; 混凝沉淀后, COD去除率约为20%, 降至7.02mg/L; 超滤膜过滤对COD有一定的截留作用,去除率约为10%,最终出水COD浓度稳定在6.3mg/L以下,去除率总计达到58%。

氨氮:原水氨氮平均为2.0mg/L,预处理对氨氮基本无去除效果;预臭氧氧化对氨氮有一定的氧化作用,去除率约为15%,降至1.7mg/L;混凝沉淀对氨氮的去除率约为10%,降至1.53mg/L;超滤膜过滤对氨氮无去除效果,但后续消毒过程中,氯与氨氮发生反应,进一步降低了氨氮浓度,最终出水氨氮浓度稳定在0.5mg/L以下,

去除率总计达到75%。

重金属(以铅为例):原水铅浓度平均为0.02mg/L,预处理和预臭氧氧化对铅基本无去除效果;粉末活性炭吸附对铅有一定的吸附作用,去除率约为20%,降至0.016mg/L;混凝沉淀过程中,铅与混凝剂形成的絮体一起沉淀下来,去除率约为30%,降至0.0112mg/L;超滤膜过滤对铅有较好的截留作用,去除率约为50%,最终出水铅浓度稳定在0.0056mg/L以下,低于国家规定的0.01mg/L标准限值。

3.4 影响水质的关键因素分析

通过对工艺运行数据的分析,发现影响水质的关键因素主要包括原水水质、混凝剂投加量、臭氧投加量、活性炭投加量、膜污染等。原水水质的变化会直接影响各处理单元的处理效果,如原水中有机物含量高时,需要增加混凝剂和活性炭的投加量。混凝剂投加量不足会导致混凝效果不佳,影响后续沉淀和过滤效果;投加量过多则会产生过多的絮体,增加沉淀池的负荷。臭氧投加量过少无法充分氧化水中的有机物,投加量过多则可能产生溴酸盐等副产物。活性炭投加量需要根据原水水质和处理要求进行合理调整。膜污染会降低膜的通量和分离性能,影响出水水质,需要定期进行膜清洗和维护。

4 工艺优化策略

4.1 工艺参数优化

根据原水水质的变化和实际运行情况,对各处理单元的工艺参数进行优化调整。通过开展混凝试验,确定最佳的混凝剂种类和投加量,提高混凝效果。优化臭氧投加量和接触时间,在保证有机物氧化效果的同时,减少副产物的产生^[3]。根据活性炭的吸附性能和原水水质,合理确定活性炭的投加量和更换周期。对于超滤膜系统,优化反冲洗和化学清洗参数,控制膜污染的发展速度,延长膜的使用寿命。

4.2 设备改进与升级

对净水厂的设备进行改进和升级,提高设备的运行效率和可靠性。例如,更换高效的混凝搅拌设备,提高混凝效果;采用新型的沉淀池结构,改善沉淀性能;升级超滤膜组件,提高膜的通量和抗污染能力。同时,加强对设备的维护和管理,定期对设备进行检查、维修和保养,确保设备正常运行。

4.3 自动化控制系统的应用

引入自动化控制系统,实现对净水厂工艺过程的实时监测和自动控制。通过安装在线水质监测仪器,实时监测各处理单元的进出水水质指标,如浊度、COD、pH值等。根据监测数据,自动调整工艺参数,如混凝剂

投加量、臭氧投加量等,实现工艺运行的优化控制。自 动化控制系统的应用可以提高工艺运行的稳定性和可靠 性,减少人工操作的误差,降低运行成本。

4.4 多级深度处理工艺的组合优化

根据原水水质和处理要求,对多级深度处理工艺进行组合优化。例如,在预处理环节可以采用多种预处理技术相结合的方式,提高预处理效果。在深度处理环节,可以将活性炭吸附、膜分离技术和高级氧化技术进行合理组合,充分发挥各种技术的优势,提高对污染物的去除效果^[4]。同时,考虑不同工艺之间的协同作用和相互影响,避免工艺之间的干扰和冲突。

5 优化后工艺的水质提升效果验证

5.1 实验设计

在工艺优化后,进行为期一年的水质监测实验。选取与优化前相同的检测指标,定期对各处理单元的进出水水质进行检测。同时,设置对照组,采用优化前的工艺参数和运行方式进行同步监测,以便对比分析优化前后工艺的水质提升效果。

5.2 实验结果与分析

实验结果表明,优化后的工艺在各项水质指标上均有显著提升。在浊度方面,优化后出水浊度稳定在0.3NTU以下,较优化前降低了40%左右。COD去除率提高了15%-20%,出水COD浓度稳定在2mg/L以下。氨氮去除率也有所提高,出水氨氮浓度符合饮用水水质标准。在重金属去除方面,优化后的工艺对铅、汞、镉等重金属的去除效果更加显著,出水重金属浓度远低于国家标准限值。此外,优化后的工艺对微生物的去除效果也得到了进一步增强,出水菌落总数和总大肠菌群数均未检出。

5.3 经济效益与环境效益分析

从经济效益方面来看,虽然工艺优化初期需要一定 的设备改造和升级投入,但在长期运行过程中,由于处 理效率的提高和处理成本的降低,能够带来显著的经济 效益。例如,通过优化工艺参数和设备运行方式,降低了混凝剂、臭氧和活性炭等药剂的投加量,减少了运行成本。同时,自动化控制系统的应用提高了生产效率,减少了人工成本。从环境效益方面来看,优化后的工艺能够更有效地去除水中的污染物,减少了对环境的污染,保护了水资源和生态环境。

结语

本研究通过对基于多级深度处理的净水厂工艺进行优化,取得了显著的水质提升效果。通过案例分析找出了影响水质的关键因素,并提出了针对性的工艺优化策略,包括工艺参数优化、设备改进与升级、自动化控制系统的应用和多级深度处理工艺的组合优化等。优化后的工艺在浊度、COD、氨氮、重金属等水质指标上均有显著改善,出水水质满足更高标准的饮用水水质要求。同时,工艺优化还带来了良好的经济效益和环境效益。未来的研究可以进一步探索新型的水处理技术和材料,将其应用于多级深度处理工艺中,进一步提高对污染物的去除效果和水质提升能力。同时,加强对净水厂工艺运行过程的智能控制和管理,实现工艺的精准调控和优化运行。此外,还应关注不同地区水源水质的特点和差异,开展针对性的工艺优化研究,为不同地区的净水厂提供更加科学合理的工艺解决方案。

参考文献

- [1]钟珏霖.净水厂运行中净水处理工艺的关键环节及技术[J].中国建筑金属结构,2025,24(11):158-160.
- [2]李婧玉,许泽希.给水厂深度处理工艺设计改善供水品质研究[J].水上安全,2025,(10):175-177.
- [3]沈俊,张良荣.水厂深度处理工艺对去除水中有机物的研究[J].清洗世界,2022,38(12):55-56+59.
- [4]郭兆学,郭慧.某北方水厂深度处理改造中工艺路线的比选和工程实践[J].净水技术,2022,41(04):141-148.