市政工程给排水管道施工中质量的控制措施

周涌泉

中山市板芙镇城市更新和建设服务中心 广东 中山 528427

摘 要:本文聚焦市政工程给排水管道施工质量,先阐述其对城市运行、居民生活、长远发展及资源利用的重要性,指出优质管道是城市功能与民生保障的核心。接着分析施工中施工管理、规划设计、材料设备、施工技术四环节的常见质量问题及成因。最后围绕施工全流程,从前期准备、测量放线、沟槽开挖与支护、基础施工、安装与接口处理、回填,到后期检测与验收,提出针对性质量控制措施,为提升市政给排水管道施工质量、保障城市基础设施稳定运行提供实践参考。

关键词:市政工程;给排水管道施工;质量控制措施

引言:市政给排水管道作为城市"水循环系统"的 关键载体,其施工质量直接关系城市功能运转、居民生活品质与可持续发展。当前部分工程因施工管理疏漏、 设计不合理、材料设备不达标及技术操作不规范,出现 管道渗漏、位置偏移等质量问题,不仅影响供水排水效 率,还易引发内涝、路面塌陷等安全隐患。深入研究市 政工程给排水管道施工质量的重要性,剖析常见问题成 因,探索全流程质量控制措施,对解决施工质量痛点、 提升工程建设水平、助力城市高质量发展具有重要现实 意义。

1 市政工程给排水管道施工质量的重要性

市政工程给排水管道施工质量,是维系城市功能与 民生保障的核心基础, 其重要性体现在以下多关键层 面。(1)从城市运行看,给排水管道是城市"水循环 系统" 核心载体。优质施工能保障供水管道稳定输送清 洁水源,满足城市生产、商业及公共设施用水,避免供 水中断;同时让排水管道高效疏导雨水、污水,防止内 涝与污水淤积,保障交通、电力等基础设施正常运转, 维系城市功能连贯。(2)在居民生活层面,施工质量直 接关平生活品质与健康安全。高质量供水管道可减少水 质二次污染,提供达标饮用水;排水顺畅能避免污水外 溢、积水浸泡,防止蚊虫滋生与异味,营造整洁居住环 境,间接保障居民健康,提升生活幸福感。(3)从长 远发展与安全保障角度, 优质管道是城市可持续发展的 支撑。其良好耐久性可减少后期维修频率,降低运维成 本,延长使用寿命,还能适配未来人口增长、区域扩张 需求,为城市规划调整预留空间,避免重复施工。且高 质量管道抗压、抗腐蚀能力强,能抵御地质沉降、极端 天气,减少管道破裂渗漏引发的路面塌陷等安全隐患, 保障行人和车辆安全[1]。

2 施工中常见质量问题及原因

市政工程给排水管道施工中,常见质量问题集中干 以下施工管理、规划设计、材料设备、施工技术四个关 键环节。(1)施工管理层面,首要问题是质量管理体系 不完善。部分施工单位未明确质量目标与责任分工,管 控流程有漏洞,各环节缺乏有效监督;人员质量意识薄 弱,对质量标准理解不深,执行随意,还常为赶进度简 化质量检查; "以包代管" 现象普遍, 工程多层分包后 管理链条断裂,分包单位技术与管理水平不一,难统一 遵循质量要求,形成管控盲区。(2)规划设计环节, 问题体现在设计合理性与深度不足。部分设计未充分结 合城市地形、地下管线分布及未来发展需求,导致管道 走向、坡度、埋深等参数不合理;设计文件对施工细 节、特殊工况考虑不全面,缺乏针对性技术方案,施工 中设计变更频繁, 打乱施工节奏, 间接引发质量问题。 (3)材料设备方面,核心问题是质量不达标。部分施 工单位为控成本,选用不符合国标管材、管件,此类材 料抗压、抗渗、抗腐蚀性能有缺陷;同时施工设备维护 不到位,老旧设备性能衰减或故障频发,无法满足施工 精度与效率要求, 直接影响管道安装、沟槽开挖等工序 质量。(4)施工技术环节,问题集中于工序操作不规 范。沟槽开挖未依地质条件制定合理方案,边坡支护不 当,易致槽壁坍塌或槽底超挖;管道安装时,中心线、 高程控制精度不足,接口连接工艺不规范,易出现位置 偏移、接口密封不严; 闭水试验前准备不充分, 管道端 头封堵、检查井密闭性检查不到位, 试验数据记录不精 准,难判断管道严密性,遗留渗漏隐患[2]。

3 市政给排水管道施工全流程关键环节质量控制措施

- 3.1 前期准备阶段的质量控制
- (1)施工前期准备阶段要从多维度搭建质量控制基

础,确保后续施工环节有序推进。施工图纸审核要全面 核查图纸与现场工况的匹配性,重点确认管线走向、管 径规格、接口方式等关键参数是否符合实际施工条件, 同时排查图纸中可能存在的矛盾或遗漏, 及时协调设计 单位进行优化调整。施工方案编制要结合工程地质、周 边环境等因素确定技术路线, 明确各环节施工工艺标 准,同步制定质量风险防范措施,方案编制完成后需组 织多方论证,确保技术可行性与质量控制措施的有效 性。(2)材料与设备进场检验是前期准备的核心环节, 管材、管件进场时需核查质量证明文件,包括出厂合格 证、性能检测报告等,同时按规范要求进行抽样检测, 检测项目涵盖管材壁厚、抗压强度、密封性等关键指 标,不合格材料严禁入场。施工设备与检测设备需在进 场前完成调试与性能校验,如挖掘机、顶管机等施工设 备需检查运行状态、操作灵敏度, 打压设备、无损检测 仪器等需校准精度,确保设备满足施工质量控制需求。

3.2 测量放线环节的质量控制

(1)测量放线环节要以精度控制为核心,保障管线 位置与高程符合设计要求。测量仪器要定期进行校准, 校准周期严格遵循相关标准,全站仪、水准仪等设备在 使用前需进行现场校验,确保测量数据准确性。测量人 员需具备专业资质,熟悉仪器操作规范,施工前需组织 专项培训,强调测量数据记录的完整性与严谨性,避免 因操作失误导致测量偏差。(2)现场测量要先复核基准 点,确认基准点稳定性后采取保护措施,防止施工过程 中基准点被破坏或扰动。管线轴线测量需按设计坐标逐 步放线,每间隔一定距离设置控制点,高程测量需结合 水准点分层测量,实时记录测量数据并进行误差分析, 误差需控制在规范允许范围内,超出误差范围时需及时 调整测量方法并重新放线。测量成果需经施工单位内部 审核, 审核通过后提交建设单位、监理单位进行确认, 多方共同查验测量数据与现场放线情况,确认无误后方 可进入下一环节施工,同时留存测量记录作为后续质量 追溯依据[3]。

3.3 沟槽开挖与支护的质量控制

(1) 沟槽开挖要严格遵循施工方案确定的参数, 开挖坡度要根据地质条件计算确定,软土、砂性土等易 坍塌土层需适当加大坡度或采取支护措施,开挖深度与 宽度需结合管道尺寸、基础厚度及操作空间要求设定, 避免超挖或欠挖。开挖过程需分层进行,每层开挖深度 控制在合理范围,同步清理沟槽内杂物,保障开挖面平 整。开挖过程中需实时监测沟槽边坡稳定性,发现边坡 出现裂缝、坍塌迹象时,需立即停止开挖并采取加固措 施。(2)沟槽支护要按方案选用合适的支护结构,钢板桩、排桩、土钉墙等支护方式的安装需符合工艺要求,支护结构的间距、深度、垂直度需严格把控,安装完成后需检查支护结构连接牢固性,确保支护体系整体稳定。支护期间需定期监测支护结构位移、沉降情况,监测频率根据施工进度与地质条件确定,监测数据超限时需及时调整支护方案。沟槽底部处理需在开挖至设计高程后立即进行,若基底土层受扰动,需采用换填砂石、分层夯实等方式修复,基底处理完成后需检测高程、平整度与承载力,承载力检测需符合设计要求,检测合格后方可验收。

3.4 基础施工的质量控制

(1)基础施工要先把控材料质量,砂石基础需选择级配合理的砂石,含泥量需控制在规范允许范围内,进场前需抽样检测砂石颗粒级配与含泥量,不合格砂石不得使用。混凝土基础需按设计配合比配制,水泥、砂石、水等原材料需符合质量标准,搅拌过程中需控制搅拌时间与坍落度,确保混凝土拌合物均匀性与和易性。

(2)砂石基础铺设要分层进行,每层铺设厚度按规范设定,铺设过程中需用平板振动器振捣密实,确保基础平整度与压实度,压实度需达到设计要求。混凝土基础浇筑前需清理基底杂物,浇筑时采用分层浇筑方式,每层浇筑厚度控制在30cm以内,使用插入式振动器振捣,振捣至混凝土表面无气泡、泛浆为止,避免漏振或过振。混凝土浇筑完成后需及时覆盖养护,养护时间不少于规范规定天数,养护期间需保持混凝土表面湿润,防止出现裂缝。

3.5 安装与接口处理的质量控制

(1)管道安装前要再次核对管材规格、型号,确保与设计一致,同时检查管材外观,无裂缝、破损、变形等缺陷的管材方可使用。安装过程中要实时调整管道轴线与高程,采用水准仪、全站仪实时监测,避免管道出现错口、偏移,管道接口需对齐,间隙均匀。安装顺序需按施工方案确定,一般从下游向上游安装,相邻管道安装完成后需及时固定,防止管道移位。(2)不同接口类型要采取针对性质量控制措施,刚性接口施工时,水泥砂浆抹带需确保砂浆配合比准确,抹带前需清理接口表面杂物,抹带厚度与宽度符合设计要求,抹带完成后需及时养护。柔性接口施工中,橡胶圈密封需选择与管材匹配的橡胶圈,橡胶圈无破损、老化现象,安装时需将橡胶圈准确放入接口凹槽内,确保密封严实;热熔焊接、电熔焊接需控制焊接温度与时间,焊接前清理管道接口表面油污、杂质,焊接完成后需冷却至规定时间,

避免提前受力。接口处理完成后需进行密封性检测,外观检查接口无裂缝、渗漏痕迹,随后进行水压试验或气密性试验,试验压力与保压时间按规范设定,试验合格后方可进入下一环节。

3.6 回填环节的质量控制

(1)回填材料要按设计要求选择,优先选用级配 砂石、素土等材料,严禁使用腐殖土、大块杂质土、冻 土等,回填材料进场前需检测颗粒级配、含水率,含水 率需控制在最佳含水率范围内, 过高或过低时需采取晾 晒、洒水等措施调整。(2)回填施工要分层进行,每 层回填厚度根据回填材料类型与压实机械确定,一般不 超过 30cm, 管道两侧需同步回填, 回填高度差控制在 30cm 以内,避免管道单侧受力导致移位。压实机械需选 用合适类型,管道顶部 50cm 范围内需采用轻型压实机 械,严禁使用重型机械直接碾压管道,压实过程中需控 制压实度,管道两侧压实度需达到95%以上,管顶以上 50cm 范围内压实度需达到 85% 以上, 管顶 50cm 以上压 实度需符合设计要求。(3)回填过程中需分层检测压实 度,每压实一层后抽样检测,检测合格后方可进行下一 层回填,避免一次性回填过厚导致压实不达标。回填至 设计高程后,需检测沟槽顶面高程与平整度,高程偏差 控制在规范允许范围内, 平整度需符合后续路面施工要 求,回填完成后需整理回填记录,包括回填材料、分层 厚度、压实度检测结果等,作为验收依据。

3.7 后期检测与验收的质量控制

(1)施工后期需先进行管道功能性试验,水压试验 分为强度试验与严密性试验,强度试验压力按设计要求 设定,保压时间内压力降需符合规范规定;严密性试验 需在强度试验合格后进行,试验压力与保压时间根据管 道材质、管径确定,保压期间需检查管道接口、阀门等 部位有无渗漏。无压管道需进行闭水试验或闭气试验, 闭水试验需封堵管道两端,向管道内注水至规定水位, 观察水位下降情况,同时检查管道外观有无渗漏;闭气 试验需向管道内充入压缩空气,监测气压变化,确保管 道密封性达标。(2)功能性试验合格后需进行管道外 观与尺寸复核,核对管道走向、埋深与设计图纸的一致 性,检查管道有无变形、破损,管道附属设施如阀门、 检查井的安装位置、高度需符合设计要求, 阀门开关灵 活,检查井内壁平整、无渗漏。(3)竣工验收资料整 理需全面、规范,包括施工技术资料、材料质量证明文 件、检测报告、测量记录、功能性试验记录等,资料需 按档案管理要求分类整理,确保完整性与准确性。验收 时需组织建设单位、施工单位、监理单位、设计单位共 同参与, 现场查验工程质量, 审核验收资料, 对存在的 问题提出整改意见,整改完成后重新验收,验收合格后 方可签署竣工验收报告,同时建立质量责任追溯机制, 明确各参与方质量责任,为后续运维提供依据[4]。

结束语:市政工程给排水管道施工质量控制是系统性工程,要贯穿施工全流程。从前期准备筑牢基础,到各施工环节精准把控,再到后期严格检测验收,每一步均要落实质量责任、规范操作流程。唯有重视施工质量重要性,针对性解决管理、设计、材料、技术等环节问题,才能有效减少质量隐患,保障管道长久稳定运行。

参考文献

[1]赵康. 市政工程给排水管道施工中质量的控制措施 [J]. 建材与装饰,2019(35):10-11.

[2]肖丽娇. 市政工程给排水管道施工中质量的控制措施[J]. 魅力中国,2020(9):328-329.

[3]曹云. 市政工程给排水管道施工中质量的控制措施 [J]. 智能城市,2019,5(9):158-159.

[4]孙久栋. 市政工程给排水管道施工中质量的控制措施[J]. 建材发展导向(下),2020,18(5):396-397.