测绘技术在土地管理领域的运用

夏平1李魏1潘玮翀2

- 1. 江苏创时空信息技术有限公司 江苏 扬州 225000
- 2. 金沛电气(扬州)有限公司 江苏 扬州 225000

摘 要:测绘技术在土地管理领域发挥着关键作用。通过运用全球定位系统、遥感技术及地理信息系统等现代测绘技术,土地管理得以实现高精度、高效率的测量与监测。这些技术为土地资源的规划、调查、确权、执法监管等提供了科学依据,优化了土地资源配置,确保了土地利用的合理性与高效性。测绘技术的运用推动了土地管理的信息化、现代化进程,为可持续土地利用提供了坚实的技术支撑。

关键词: 测绘技术; 土地管理领域; 运用

引言:土地管理作为国家资源管理和规划的基础, 其准确性和高效性至关重要。测绘技术,作为获取、处 理和展示地理信息的重要手段,为土地管理提供了强大 的技术支撑。随着遥感、全球定位系统和地理信息系统 等现代测绘技术的不断发展,土地管理得以更加科学、 精确地进行。这些技术的应用,不仅提高了土地管理的 效率,还增强了决策的合理性,对保障土地资源合理利 用和可持续发展具有重要意义。

1 测绘技术概述

- 1.1 测绘技术的基本概念
- (1)定义与分类。测绘技术是指通过仪器、设备和方法对地球表面及空间物体的形状、位置、大小等地理信息进行采集、处理、存储与展示的技术体系。按应用领域可分为工程测绘、大地测绘、地籍测绘等;按技术手段可分为传统测绘(如经纬仪、水准仪测量)和现代测绘(如遥感、GPS测量)。(2)主要技术特点。具有高精度性,能满足毫米级到米级的测量需求;实时性,现代技术可实现数据的即时获取与传输;集成性,多技术融合提升作业效率;数字化,数据以数字形式存储,便于后续处理与共享;动态性,可对地理信息进行动态监测与更新。

1.2 现代测绘技术的主要类型

(1)遥感技术(RS)。通过卫星、飞机等平台搭载传感器,远距离接收地物反射或发射的电磁波信息,经处理生成影像数据。具有覆盖范围广、获取周期短、动态性强的特点,可快速获取大面积地表信息,广泛应用于环境监测、灾害评估等领域,能及时反映森林火灾、洪涝灾害等动态变化。(2)地理信息系统(GIS)。以计算机为核心,对地理空间数据进行采集、存储、管理、分析和可视化展示的技术系统。可将空间位置与属

性信息关联,通过叠加分析、缓冲区分析等功能,为城市规划、交通管理等提供决策支持,例如在城市路网规划中,能模拟交通流量并优化线路布局。(3)全球定位系统(GPS)及其衍生技术(如GPSRTK)。GPS利用多颗卫星信号实现全球范围内的实时定位,静态定位精度可达厘米级,动态定位精度为米级。GPSRTK(实时动态差分技术)通过基准站与移动站的数据交互,可实现厘米级实时定位,在工程放样、地形测绘等场景中,能大幅提升作业效率,减少传统测量的繁琐流程^[1]。

1.3 测绘技术的发展趋势

(1)智能化、自动化水平的提升。人工智能与机器学习技术深度融入,推动数据采集、处理自动化。例如,无人机可自主规划航线并完成数据采集,智能算法能自动识别影像中的地物类型,减少人工干预,提升作业效率与精度,降低对操作人员经验的依赖。(2)数据处理与分析技术的创新。面对海量多源数据,云计算与大数据技术成为关键支撑。云平台可实现数据分布式存储与并行处理,提高运算速度;大数据分析技术能挖掘数据潜在关联,为智慧城市、气候变化研究等提供深度洞察,让数据价值得到充分释放。(3)三维测绘与立体测绘技术的发展。从二维平面向三维立体转型加速,激光雷达、倾斜摄影等技术广泛应用。激光雷达可快速获取物体三维点云数据,倾斜摄影能生成真实感强的三维模型,在城市建模、文物保护等领域,可精准还原物体形态,满足精细化管理需求。

2 测绘技术在土地管理领域的运用

- 2.1 土地规划与利用
- (1)提供精确的地理信息数据支持。测绘技术通过 GPS、遥感等手段,可获取土地的地形地貌、土壤类型、 植被覆盖等高精度数据,为土地规划提供基础信息。例

如,利用无人机航测能快速生成高分辨率地形图,精准呈现地块的边界、高程等细节,确保规划方案建立在准确数据之上。(2)辅助土地规划编制与资源合理分配。借助GIS技术对测绘数据进行整合分析,可清晰掌握不同区域土地的适宜性。在编制规划时,能根据数据明确耕地、建设用地、生态用地等的范围,实现土地资源的科学分配。比如,通过叠加土壤肥力、交通区位等数据,确定优质耕地保护区和产业园区的合理选址^[2]。(3)优化土地利用结构,促进可持续发展。测绘技术动态监测土地利用现状,为调整利用结构提供依据。通过对比不同时期的土地数据,可发现闲置土地、低效利用地块等问题,进而制定整改方案,推动土地向集约化利用转变,在保障经济发展的同时,维护生态平衡,实现可持续发展。

2.2 土地登记与交易

(1)确定土地边界、面积等关键信息。采用全站 仪、GPSRTK、三维激光扫描等先进技术进行实地测绘, 能精确界定土地的权属边界、拐点坐标和实际面积,彻 底解决传统测量中因人工操作导致的边界模糊、面积误 差大等问题。特别是在山地、丘陵、水域等复杂地形 区域, 测绘技术可通过多方位数据采集与校准, 保证边 界划分的准确性,为土地登记工作筑牢基础。(2)为 土地登记、发证提供法律依据。测绘形成的地籍图、宗 地图、权属界线图等成果,经过严格审核后具有法律效 力,是土地登记和核发不动产权属证书的核心凭证。这 些成果详细记录了土地的地理位置、权属主体、面积大 小、用途性质等关键信息,确保登记内容的真实性、权 威性和唯一性,从根本上减少权属纠纷的发生,维护土 地产权秩序。(3)保障土地交易的公平性和透明度。在 土地出让、转让、抵押等交易过程中, 测绘数据是交易 价格评估、税费核算的重要参考依据。准确的面积、位 置、地形等信息让交易双方能够清晰、全面地了解土地 状况,有效避免因信息不对称导致的不公平交易。同时, 监管部门可依据测绘数据对交易过程进行全程监督,确 保交易行为合规合法,维护土地市场的正常秩序[3]。

2.3 土地动态监测

(1)实时监测土地利用变化。遥感技术凭借周期性、大范围获取数据的特点,通过对不同时段的高分辨率卫星影像、无人机影像进行比对分析,能实时掌握土地利用类型的动态变化情况,如耕地转为建设用地、林地被非法侵占、湿地面积缩减等。监测数据可及时更新至土地利用数据库,为土地管理决策提供最新依据。(2)及时发现非法占地、违规开发等问题。利用高分辨

率遥感影像结合GIS空间分析功能,通过设定用地规划 红线、生态保护底线等预警阈值,可快速识别出超出规 划范围的建设项目、未批先建、擅自改变土地用途等违 规行为。监测数据能第一时间通过信息平台反馈给管理 部门,为及时制止违法行为、减少资源损失争取宝贵时 间。(3)为土地执法提供技术支持。动态监测形成的连 续影像资料、变化矢量数据等,可作为土地执法的直接 证据,清晰呈现违法用地的位置、范围、面积、变化过 程及现状,让执法过程更具说服力和权威性,有效提高 执法的准确性和工作效率,避免因证据不足导致的执法 困难。

2.4 土地执法与监管

(1)利用卫星影像技术掌握违法用地信息。卫星遥 感具有全天候、大范围覆盖的优势, 通过定期拍摄监测 区域影像,可全面排查违法用地情况。对于地处偏远、 交通不便的地区或隐蔽性较强的违法占地行为,卫星影 像能突破地域和时间限制,及时发现问题,实现执法监 管的无死角覆盖。(2)提高土地监管部门的工作效率。 传统土地监管依赖大量人力进行实地巡查,不仅耗时费 力,而且难以实现全面覆盖。测绘技术提供的精准数据 和可视化成果, 让监管人员在办公室通过电脑即可直观 掌握土地动态变化,准确定位可疑区域,有针对性地开 展实地核查,大幅节省时间和人力成本,显著提升监管 效率[4]。(3)强化土地执法力度,维护土地管理秩序。 凭借测绘技术获取的确凿证据, 执法部门能够依法对违 法用地行为进行严肃处罚,形成强大震慑力。同时,通 过建立违法用地数据库,对违法行为的整改情况进行跟 踪管理和动态评估,防止类似问题再次发生,有效维护 正常的土地管理秩序。

2.5 土地开发与整理

(1)提供开发前期的测绘数据支持在土地开发整理项目前期,测绘技术可对开发区域进行全方位、立体化测量,获取详细的地形坡度、地貌特征、水文条件、地下管线分布等数据,为项目可行性研究、规划设计、工程预算等提供全面、准确的资料,确保项目设计符合实际地形条件和工程建设要求。(2)辅助分析土地开发的可行性和效益。通过GIS技术对测绘数据进行深度挖掘与分析,可系统评估开发区域的交通通达度、水利设施配套情况、环境承载能力等,科学预测开发后的经济效益、社会效益和生态影响。例如,在滩涂开发项目中,测绘数据能帮助精准判断地势高低、土壤盐渍化程度、潮汐影响范围等,为项目可行性决策提供科学依据。

(3) 优化土地开发方案,提高土地利用效率。根据测绘

获取的精准数据,可对开发方案进行多轮优化调整,如合理规划道路走向与宽度、确定地块划分大小与形状、优化排水灌溉系统布局等,使开发后的土地布局更合理、功能更完善,最大限度提高土地的利用效率,实现开发效益的最大化。

3 测绘技术在土地管理中面临的挑战与对策

3.1 技术挑战

(1)数据处理与分析的复杂性。随着遥感、GPS等技术的发展,土地管理领域的测绘数据呈现出海量、多源、异构的特点,涵盖影像数据、矢量数据、属性数据等多种类型。这些数据格式不一、标准各异,给数据整合带来极大难度。同时,土地利用变化的动态性要求数据处理需具备实时性,而传统的数据处理软件和方法在应对海量数据时,往往出现运算速度慢、分析精度不足的问题,难以满足土地管理中快速决策的需求。(2)测绘技术的精度与稳定性要求。土地管理对测绘数据的精度要求极高,尤其是在土地边界划分、权属登记等环节,微小的误差都可能引发权属纠纷。但在实际作业中,测绘精度易受外界环境影响,如复杂地形导致GPS信号弱、恶劣天气干扰遥感影像质量等,都会降低数据的准确性。此外,部分老旧测绘设备的稳定性不足,也会影响长期监测数据的一致性,给土地动态管理带来挑战。

3.2 管理挑战

(1) 跨部门协作与信息共享的障碍。土地管理涉及自然资源、住建、农业等多个部门,各部门往往采用不同的测绘标准和数据平台,导致数据格式不兼容、信息难以互通。部门间存在的信息壁垒,使得测绘数据无法高效共享,出现重复测绘、资源浪费的现象。例如,同一地块的测绘数据在不同部门中可能存在差异,影响土地规划、执法等工作的协同推进。(2)技术人员培训与技术更新的需求。现代测绘技术更新迭代速度快,从传统的全站仪测量到无人机航测、三维激光扫描等新技术的应用,对技术人员的专业能力提出了更高要求。但目前部分土地管理部门的技术人员仍停留在传统测绘技能层面,对GIS、遥感等新技术的掌握不足。同时,缺乏系统的培训机制,导致技术人员难以跟上技术发展步伐,影响了测绘技术在土地管理中的充分应用。

3.3 对策与建议

(1)加强技术研发与创新,提升测绘技术的精度 与效率。加大对测绘技术研发的投入,鼓励企业和科研 机构开发适应土地管理需求的智能化数据处理平台,利 用大数据、人工智能等技术提升数据整合与分析效率。 同时,研发抗干扰能力强的测绘设备,优化复杂环境下 的测绘方法,提高数据精度和稳定性,为土地管理提供 可靠的技术支撑。(2)完善信息共享机制,促进跨部 门协作。建立统一的测绘数据标准和共享平台,推动各 部门按照标准规范采集、存储和上传数据, 打破信息壁 垒。通过制定相关政策,明确各部门的数据共享责任和 权限,实现土地管理相关数据的实时互通。例如,建立 跨部门的地理信息公共服务平台, 让各部门能便捷获取 所需的测绘数据,减少重复劳动,提升协同管理效率。 (3)加强技术人员培训,提升行业整体技术水平。建立 常态化的技术培训机制,定期组织土地管理部门的技术 人员参加新技术培训,内容涵盖无人机操作、GIS软件应 用、遥感影像解译等。同时,鼓励技术人员参与行业交 流和实践项目,通过理论与实践结合,提升其对新技术

结束语

综上所述,测绘技术在土地管理领域的应用极大地 提升了管理效率与科学性。通过高精度、实时性的地理 信息数据采集与处理,为土地规划、利用、监测及执法 提供了坚实的基础。未来,随着测绘技术的不断创新与 发展,其在土地管理中的应用将更加广泛深入,进一步 推动土地资源的优化配置与可持续利用,为实现土地管 理现代化贡献更多力量。

的应用能力。此外,引进高素质的测绘专业人才,优化

人员结构,推动行业整体技术水平的提升。

参考文献

[1]朱孝菊.现代化测绘技术在地籍测绘中的应用分析 [J].城市建设理论研究(电子版),2023,(15):163-165.

[2]徐旺.GPS测绘技术在地质测绘中的应用[J].中国住宅设施,2023,(08):88-90.

[3]邱勇.测绘技术在现代工程测量中的应用[J].信息系统工程,2023,(06):68-69.

[4]普巴.测绘工程中特殊地形的测绘技术探究[J].中国 金属通报,2022,(13):150-151.