矿山测量中井下巷道贯通测量问题分析

刘永峰

潼关县祥顺矿业发展有限公司 陕西 渭南 714300

摘 要: 井下巷道贯通测量在矿山测量中极为重要,对后续矿山生产及其质量有直接影响。为确保贯通测量精度,需做好准备工作,明确贯通中心线和巷道开切点,并重点关注长距离贯通测量的精度估算。贯通测量误差主要源于控制点偏差、仪器精度低、操作不当及外界环境干扰。采用全球定位系统、定量分析测量法及陀螺附和导线测量技术可提高测量精度。严格把控测量流程,确保矿山工程顺利进行。

关键词: 矿山测量; 井下巷道贯通; 测量问题

引言:矿山测量是保障矿山安全高效开采的基础,其中井下巷道贯通测量尤为关键。贯通测量不仅影响巷道的精准对接,还直接关系到矿山生产进度与人员安全。随着开采深度的增加,井下环境日趋复杂,对贯通测量精度提出了更高要求。本文旨在分析井下巷道贯通测量中的常见问题,探讨提高测量精度的有效措施,以期为矿山安全生产提供技术支撑和参考依据。

1 井下巷道贯通测量的基本原理与方法

- 1.1 贯通测量的定义与分类
- (1)贯通测量的概念及内涵。贯通测量是指在矿山井下开采中,为使两个或多个巷道按设计要求准确接通,而进行的一系列测量工作,涵盖平面位置、高程及方向的精确测定,是保障巷道安全高效施工的关键环节,直接影响矿山生产进度与作业安全。(2)巷道贯通的类型与特点。按贯通距离可分为短距离(小于1000m)、中距离(1000-3000m)和长距离(大于3000m)贯通;按方向分为水平、倾斜和竖直贯通。短距离贯通精度要求相对较低,长距离贯通受误差累积影响大,精度要求高;水平贯通侧重平面位置控制,竖直贯通重点把控高程。
 - 1.2 井下巷道贯通测量的基本原理
- (1)测量坐标系的选择与建立。通常采用矿区独立坐标系,平面以矿区中央子午线为基准,高程以矿区水准点为起算。通过地面控制网与井下控制网联测,实现井上井下坐标统一,为巷道贯通提供统一测量基准。(2)误差来源与分类。主要误差包括仪器误差(如全站仪角度测量误差)、观测误差(如人员读数误差)、外界环境误差(如井下温度、湿度对仪器的影响)。按性质可分为系统误差和偶然误差,系统误差可通过校正仪器消除,偶然误差需通过多次观测减弱^[1]。
 - 1.3 主要测量方法与技术

(1)全球定位系统(GPS)在井下巷道贯通测量中的应用。需在地面布设GPS基站,通过井下布设的接收设备接收信号,实现对井下测量点的定位,适用于长距离、大范围的贯通测量,精度高、效率快。(2)陀螺仪定向测量法。利用陀螺仪测定真北方向,确定井下巷道的方位角,不受磁场干扰,定向精度高,常用于井下导线定向,为巷道贯通提供方向基准。(3)传输线测量法。通过铺设传输线,利用电磁波或光波传递测量信号,实现井上井下数据传输与测量,适用于复杂地质条件下的贯通测量,能减少外界干扰。(4)其他传统测量方法。全站仪可同时进行角度和距离测量,通过布设井下导线网,逐步传递坐标和高程,操作简便,适用于中短距离贯通测量,在矿山井下应用广泛。

2 井下巷道贯通测量中常见问题分析

- 2.1 人为误差的影响
- (1)测量人员操作技能不熟练导致的误差。测量 人员若对全站仪、陀螺仪等设备的操作流程不熟悉,易 出现关键步骤遗漏或操作失误。例如,使用全站仪进行 角度测量时,未能准确完成对中、整平操作,会导致仪 器中心与测量点偏离,直接引发角度与距离测量误差; 在陀螺仪定向过程中, 若不熟练掌握寻北、锁定等操作 技巧,可能延长定向时间,且易因操作偏差使真北方向 判定出现偏差,进而影响巷道方位角设定,对贯通精度 造成连锁影响。(2)操作不规范、态度不严谨引起的 误差。部分测量人员存在操作随意性,如观测时未严格 遵循"三丝法"读数规则,仅用单丝读数,忽视读数校 核;记录数据时未及时核对,出现笔误或数据混淆,且 未进行二次复算验证。此外, 在布设井下导线点时, 若 态度不严谨,未选择稳定、视野开阔的点位,或未妥善 保护点位标记,导致后续测量时点位偏移或无法识别, 都会使测量数据失真,影响贯通测量整体精度。

2.2 巷道条件对测量结果的影响

(1) 巷道弯曲程度及形状对测量精度的影响。巷 道弯曲程度越大,需布设的导线点数量越多,测量误差 累积风险越高。例如, 急弯巷道中, 相邻导线点间距缩 短,每次角度测量的微小误差会随导线延伸不断叠加, 导致最终贯通点的平面位置偏差增大; 不规则形状巷道 (如折线形、弧形巷道)会增加仪器架设难度,测量视 线易被巷道壁遮挡, 需频繁移动仪器调整观测角度, 不 仅降低测量效率,还可能因多次架设仪器的对中误差, 进一步影响测量精度。(2)不同截面形状巷道的测量 难点。矩形截面巷道虽视野相对开阔,但墙角易产生反 光,可能干扰全站仪等设备的光学观测;梯形截面巷道 两侧倾斜,导线点若设置在巷帮,易因巷道变形导致点 位下沉或偏移; 圆形截面巷道无明显基准面, 点位标记 难以固定,且测量时需精准确定巷道中心轴线,若轴线 定位偏差,会直接影响巷道贯通的方向把控,增加测量 操作的复杂性与误差风险[2]。

2.3 环境因素对测量结果的影响

(1)粉尘、水汽对测量设备的干扰。井下巷道粉 尘浓度高时,会附着在全站仪镜头、陀螺仪光学部件表 面,遮挡观测视线,导致读数模糊,降低角度与距离测 量的准确性; 水汽易在仪器内部元器件表面凝结, 损坏 电路系统,影响设备正常工作,例如导致GPS接收机信 号接收不稳定,无法精准获取定位数据,进而影响贯通 测量的基准设定。(2)地下水对测量精度的影响。地 下水渗透会导致巷道底板变形、沉降, 使布设的导线点 位置发生偏移, 若未及时发现并校正, 会导致后续测量 数据基于错误点位,引发累积误差;同时,地下水会使 巷道内湿度升高,加速仪器金属部件锈蚀,影响设备精 度,且积水区域可能阻碍测量人员通行,迫使测量路线 绕行,增加测量环节与误差来源。(3)温度与湿度对测 量结果的间接影响。井下温度剧烈变化会导致测量仪器 的金属支架、光学部件热胀冷缩, 改变仪器内部结构参 数, 例如使全站仪的视准轴发生偏移, 导致角度测量误 差; 高湿度环境会降低水准尺刻度的清晰度, 增加读数 误差,同时会影响导线点标记的稳定性,如纸质标记受 潮损坏、金属标记锈蚀模糊,导致点位识别困难,影响 测量连续性。

2.4 测量仪器与设备的问题

(1) 仪器精度不足导致的误差。部分矿山仍使用老旧或精度等级不达标的测量设备,例如使用精度为±2"的全站仪进行长距离(大于3000m)贯通测量,其角度测量误差会随距离延伸被放大,无法满足高精度贯通要

求;低精度GPS接收机在井下信号复杂环境中,定位误差可达数厘米,远超过规范允许范围,直接导致巷道贯通点平面位置偏差超标。(2)设备使用不当或维护不善引起的误差。测量前未按规范对仪器进行校准,如全站仪未进行2C值、指标差校正,陀螺仪未进行寻北精度检验,会使仪器本身存在系统误差;日常维护缺失,如仪器长期暴露在粉尘、水汽环境中未及时清洁保养,导致部件磨损、精度下降,例如全站仪测距棱镜表面磨损,会降低光信号反射效率,使距离测量误差增大;此外,测量时未正确携带与放置设备,如剧烈碰撞仪器,可能损坏内部精密部件,进一步加剧测量误差。

3 提高井下巷道贯通测量精度的措施

3.1 优化测量流程与方案

(1)建立标准化的操作流程:结合井下复杂的作业 环境(如粉尘、湿度、空间限制等),制定覆盖测量准 备、现场操作、数据记录、成果整理全环节的标准化流 程。明确各环节的操作规范,例如在测量仪器架设时, 需确保三脚架稳定、对中整平误差控制在毫米级;数据 记录需采用双人核对模式,避免笔误或漏记,同时统一 记录格式与单位,确保数据的规范性与可追溯性。(2) 制定详细的测量方案: 在测量前, 需全面勘察井下巷道 的地质条件、现有工程布局及贯通要求, 针对性制定方 案。方案中需明确测量路线的选择(优先避开地质不稳 定区域)、测量控制点的布设密度(根据巷道长度,每 50-100米设置一个控制点)以及测量次数的确定(关键 环节至少进行2次独立测量),同时预判可能出现的干 扰因素(如机械振动、电磁干扰),并制定应对预案。 (3)引入计算机程序与误差预计公式:借助专业测量软 件(如CASS、Surfer)实现数据的自动化处理与分析, 减少人工计算带来的误差;同时运用误差预计公式,在 测量前对可能产生的系统误差(如仪器校准误差)、偶 然误差(如读数误差)进行量化估算,明确误差控制范 围,例如将方位角误差控制在±5秒以内,距离测量误差 控制在1/50000以内,确保测量成果符合精度要求。

3.2 加强人员培训与技能提升

(1)测量人员专业技能培训:定期组织理论培训与实操训练,内容涵盖测量原理、仪器操作(如全站仪、陀螺仪、GNSS接收机的使用)、数据处理软件应用及井下安全知识等。针对井下特殊环境,开展模拟实操训练,例如在模拟巷道中练习仪器对中整平、黑暗环境下的读数技巧,确保人员能熟练应对井下复杂工况;同时邀请行业专家进行案例讲解,分析过往测量失误案例,帮助人员积累经验,提升问题解决能力。(2)工作态度

与责任心的培养:通过班前会、安全例会强调测量工作的重要性,明确测量失误可能带来的严重后果,增强人员的责任意识;建立师徒帮带制度,由经验丰富的老员工带领新员工,在实操中传递严谨细致的工作作风;同时开展职业道德教育,引导人员树立"数据零差错、测量零失误"的工作目标,避免因粗心大意、敷衍了事导致精度问题^[3]。

3.3 引进先进测量技术与方法

(1) 关注测量技术的最新发展动态:通过订阅行业 期刊(如《矿山测量》《测绘通报》)、参加行业展会 (如中国国际测绘地理信息技术装备展览会)、与科研 院校合作等方式,及时了解全球范围内测量技术的创新 成果,例如惯性导航测量技术、三维激光扫描技术在井 下测量中的应用,评估新技术的适用性与可行性,为技 术引进提供依据。(2)采用高精度测量仪器与设备: 淘汰老旧、精度不足的仪器,引入高精度测量设备,如 0.5秒级全站仪(测距精度可达±(0.6mm+1ppm×D))、 高精度陀螺仪(方位角测量精度±3秒)、GNSS接收机 (静态测量精度可达毫米级)等;同时定期对仪器进行 校准与维护,按照国家计量标准,每半年至一年送专业 机构进行检定,确保仪器始终处于精准状态,避免因仪 器老化或故障导致测量误差。(3)应用新技术提高测 量效率与精度:将三维激光扫描技术应用于巷道断面测 量,快速获取巷道三维模型,实现对巷道变形的实时监 测,同时减少人工测量的劳动强度与误差;在长距离巷 道贯通中,采用惯性导航与GNSS结合的技术,解决井下 GNSS信号遮挡问题,提高方位角测量精度;此外,引入 BIM (建筑信息模型)技术,将测量数据与工程设计模型 结合,实现测量成果的可视化管理,便于及时发现测量 偏差并调整。

3.4 实施严格的质量控制

(1)对测量结果进行明确分析与矫正检验:在每次测量完成后,及时对数据进行整理分析,对比两次独立测量的成果,若差值超出允许误差范围,需重新排查原因(如仪器故障、操作失误),并进行补测;同时将测

量结果与设计图纸进行比对,检查巷道中线、高程是否与设计一致,若存在偏差,需计算偏差值并制定矫正方案,例如通过调整后续测量路线或巷道施工参数,确保贯通精度。(2)重复测量与独立检查制度:建立"测量-检查-复核"的三级质量控制体系,测量人员完成测量后,由质检人员进行独立检查,核对数据记录的完整性、计算的准确性;关键测量环节(如贯通面附近的测量)需安排另一组人员进行重复测量,两组数据对比合格后方可采用,避免因单人操作失误导致精度问题^[4]。

(3)建立奖惩机制,提高测量人员的积极性与责任心:制定明确的质量考核标准,将测量精度、数据准确性、工作完成效率纳入考核指标,定期对人员工作表现进行评估;对测量成果优秀、无误差超标的人员给予现金奖励、荣誉表彰或晋升机会;对因工作失误导致测量偏差、影响工程进度的人员,进行批评教育、经济处罚或岗位调整,通过奖惩分明的机制,激发人员的工作积极性,强化责任意识,确保测量工作质量。

结束语

综上所述, 井下巷道贯通测量是矿山测量工作的重中之重, 其精度直接关乎矿山开采的安全与效率。面对井下复杂多变的环境条件, 我们必须不断优化测量流程, 引进先进技术, 加强人员培训, 实施严格的质量控制, 以确保贯通测量的高精度与高可靠性。未来, 随着技术的不断进步, 井下巷道贯通测量将更加智能化、自动化, 为矿山的安全高效开采提供更加坚实的保障。

参老文献

[1]李立鍼.矿山测量中井下巷道贯通测量问题分析[J]. 中国金属通报,2023,(12):159-161.

[2]徐胜伟,宗琪琪,王鹏.矿山测量中井下巷道贯通测量问题分析[J].世界有色金属,2025,(08):156-158.

[3]孙元成,刘成斌.矿山测量中井下巷道贯通测量问题 探究[J].世界有色金属,2024,(12):144-146.

[4]张嘉源.矿山测量中井下巷道贯通测量的问题及策略分析[J].大众科学,2024,(07):57-59.