关于火电厂循环流化床锅炉的常见故障与预防对策探讨

高意雄

国能亿利能源有限责任公司电厂 内蒙古 鄂尔多斯 014300

摘 要:火电厂循环流化床锅炉(CFB锅炉)因其高效能、低污染及广泛的燃料适应性而备受关注。然而,CFB锅炉在运行过程中常面临磨损、结焦、旋风分离器效率下降等故障,这些故障严重影响锅炉的安全运行和经济效益。本文深入分析了CFB锅炉的常见故障及其成因,并提出了相应的预防对策,包括控制风速与给煤粒度、优化燃烧调整、加强锅炉运行监控等,旨在为CFB锅炉的安全稳定运行提供技术支持和指导。

关键词:火电厂循环流化床锅炉;常见故障;预防对策

引言:火电厂循环流化床锅炉(CFB锅炉)作为当前电力行业中广泛应用的一种高效、环保的燃烧设备,其在提高能源利用率、减少污染物排放等方面发挥着重要作用。然而,在实际运行过程中,CFB锅炉也面临着诸多常见故障,如磨损、结焦、旋风分离器效率下降等,这些问题不仅影响锅炉的稳定运行,还增加了维修成本和安全风险。因此,探讨CFB锅炉的常见故障及其预防对策,对于保障锅炉安全、高效运行具有重要意义。

1 循环流化床锅炉的基本原理与特点

1.1 循环流化床锅炉的工作原理

(1)燃料燃烧与流化过程。CFB锅炉的工作原理 基于燃料在循环流化床内的燃烧过程。燃料首先经过破 碎机破碎至适当粒度,然后通过给煤机送入锅炉的燃烧 室。在燃烧室内,燃料与炽热的沸腾物料(床料)混 合,并在高速气流的作用下形成流化床。燃料在床内迅 速加热并着火燃烧,同时释放出大量的热能。燃烧过程 中,大量固体颗粒被气流携带出燃烧室,经过气固分离 器分离后,再由物料回送装置送回炉膛继续参与燃烧, 形成循环流化过程。(2)热量传递与蒸汽生成。在CFB 锅炉中, 热量传递与蒸汽生成是两个紧密相连的过程。 燃烧产生的高温烟气通过尾部烟道与对流受热面进行换 热,将热量传递给锅炉内的工质(水)。锅炉给水经水 泵送入省煤器预热后,进入汽包。在水冷壁内,水被加 热并蒸发成蒸汽,然后返回汽包进行汽水分离。分离后 的蒸汽进入过热器进一步升温, 最终通过主蒸汽管道送 至用户处。

1.2 循环流化床锅炉的技术特点

(1)高效能与低污染。CFB锅炉采用先进的流化 床燃烧技术,燃料在床内充分燃烧,燃烧效率高,热效 率高。同时,通过在燃烧过程中添加石灰石进行炉内脱 硫,以及采用低氮燃烧技术,CFB锅炉能够显著降低烟气 中的硫氧化物和氮氧化物排放,实现高效能与低污染的 双重目标。(2)广泛的燃料适应性。CFB锅炉对燃料的 适应性强,可燃烧煤矸石、煤泥等高灰分低热值燃料, 也适用于优质煤的燃烧。这种广泛的燃料适应性使得CFB 锅炉在燃料选择上具有更大的灵活性和经济性。(3)良 好的负荷调节性能。CFB锅炉具有出色的负荷调节性能, 能够快速响应负荷变化,适应不同的运行工况。这一特 点使得CFB锅炉在电网调峰和负荷调节方面表现出色,为 电网的稳定运行提供了有力保障^[1]。

2 火电厂循环流化床锅炉的常见故障分析

2.1 磨损故障

(1)磨损的原因与机理。CFB锅炉的磨损故障主要 由高速度、高浓度的固体颗粒冲击以及炉内温度循环流 动的热冲击引起。在CFB锅炉中,燃料颗粒和床料在高速 气流的作用下呈现流态化,这些颗粒不断冲击锅炉的受 热面、耐火材料和水冷壁、导致严重的磨损。(2)高速 度、高浓度固体颗粒的冲击。固体颗粒的冲刷是CFB锅 炉磨损的主要原因之一。当颗粒以较高的速度撞击受热 面时,会产生显著的切削作用,导致管壁逐渐变薄甚至 穿孔。此外,颗粒的浓度也会影响磨损程度,颗粒浓度 越高,磨损越严重。(3)炉内温度循环流动的热冲击。 炉内温度的循环变化会导致耐火材料和受热面经历热冲 击,这种频繁的温度变化会加速材料的疲劳和剥落,进 一步加剧磨损。(4)磨损故障的影响与危害。磨损故障 会直接导致锅炉性能下降,受热面效率降低,从而影响 锅炉的整体热效率。此外,磨损还会缩短设备的使用寿 命,增加维修和更换部件的成本。在极端情况下,磨损 可能导致锅炉紧急停炉,影响电厂的稳定运行。

2.2 结焦故障

(1)结焦的原因与过程。结焦是CFB锅炉中另一种 常见的故障,主要由温度过高导致的焦炭形成以及物料 循环系统中的漏风与燃烧不充分引起。当床温超过燃料的灰熔点时,燃料中的灰分会开始熔化并粘结在一起,形成焦炭。此外,物料循环系统中的漏风会导致局部氧气浓度升高,引发燃烧不充分,进而产生结焦。(2)温度过高导致的焦炭形成。床温过高是结焦的主要原因。在CFB锅炉中,如果燃烧调整不当或给煤量过多,床温会迅速升高并超过燃料的灰熔点,导致焦炭的形成。(3)物料循环系统中的漏风与燃烧不充分。漏风会降低物料循环系统中的氧气浓度分布均匀性,导致局部燃烧不充分。这些未完全燃烧的燃料颗粒在循环过程中会不断积累热量,最终引发结焦。(4)结焦故障的危害。结焦会严重堵塞物料循环系统,导致循环灰量减少,床温控制困难。此外,结焦还会增加锅炉的通风阻力,降低锅炉的热效率。在极端情况下,结焦可能导致锅炉被迫停炉进行清理,严重影响电厂的运行计划^[2]。

2.3 旋风分离器效率下降故障

(1)效率下降的原因分析。旋风分离器效率下降主 要由中心筒结构不合理、分开器内壁磨损与塌落以及漏 风与窜气现象引起。中心筒是旋风分离器的关键部件, 其结构不合理会导致气流分布不均,影响分离效率。内 壁磨损和塌落会改变分离器的形状,降低其分离能力。 而漏风和窜气则会破坏分离器内的气流平衡,导致分离 效率显著下降。(2)中心筒结构不合理。中心筒的结构 设计直接影响分离器的气流分布和分离效率。如果中心 筒的尺寸、形状或安装位置不合理,会导致气流在分离 器内部分布不均,部分颗粒无法被有效分离。(3)分开 器内壁磨损与塌落。长时间运行后,分开器的内壁会受 到固体颗粒的冲刷和磨损,导致内壁变薄甚至塌落。这 种磨损和塌落会改变分离器的形状和尺寸,降低其分离 效率。(4)漏风与窜气现象。漏风和窜气会破坏分离器 内的气流平衡,导致颗粒在分离器内的停留时间缩短, 分离效率降低。此外,漏风和窜气还可能导致分离器出 口含尘量增加,进一步影响锅炉的性能和效率[3]。(5) 效率下降对锅炉运行的影响。旋风分离器效率下降会直 接导致未燃尽颗粒增多。这些未燃尽的颗粒随烟气进入 尾部受热面,不仅会降低受热面的传热效率,还可能引 发受热面的积灰和磨损,严重时甚至导致受热面堵塞或 爆管。此外,未燃尽颗粒的增多还会增加锅炉的固体不 完全燃烧损失,降低锅炉的热效率。(6)尾部受热面磨 损加剧。由于旋风分离器效率下降,未燃尽颗粒进入尾 部受热面,这些颗粒在高速烟气的携带下会不断冲击受 热面管壁,导致管壁磨损加剧。长期以往,不仅会降低 受热面的使用寿命,还可能引发严重的安全事故。

2.4 其他常见故障

(1)炉膛爆炸事故。炉膛爆炸是CFB锅炉中一种极为严重的安全事故。它通常由于燃料中混入易燃易爆物质、燃烧调整不当或点火失败等原因引起。炉膛爆炸不仅会造成设备损坏和人员伤亡,还可能对电厂的运行和环境造成严重影响。(2)锅炉水位事故。锅炉水位事故是CFB锅炉运行中常见的故障之一。它可能由于给水系统故障、水位计失灵或运行人员误操作等原因引起。锅炉水位过高或过低都会对锅炉的安全运行构成威胁,严重时可能导致锅炉爆管或停炉。(3)给煤系统故障。给煤系统是CFB锅炉的重要组成部分,它负责将燃料送入炉膛进行燃烧。给煤系统故障可能由于煤质变化、给煤机故障或控制系统失灵等原因引起。给煤系统故障会导致燃料供应不足或中断,严重影响锅炉的稳定运行和热效率。

3 火电厂循环流化床锅炉故障的预防对策

3.1 磨损故障的预防对策

磨损是CFB锅炉运行中最为常见的故障之一,主要发 生在锅炉受热面、耐火材料和水冷壁等部位。(1)控制 风速与给煤粒度。CFB锅炉内的固体颗粒在高风速下会对 受热面产生强烈的冲刷作用,导致磨损加剧。因此,合 理控制风速是预防磨损的关键。同时,给煤粒度的选择 也至关重要。过大的煤粒不易流化,容易在局部形成磨 损热点;而过小的煤粒则会增加颗粒的磨蚀性。因此, 应根据锅炉的实际运行情况和煤种特性, 合理设定风速 和给煤粒度,以减少磨损。(2)锅炉安装与检修质量 的提升。锅炉的安装质量和检修水平直接影响其耐磨性 能。在安装过程中,应确保受热面、耐火材料等部件的 安装位置准确、固定牢固,避免在运行过程中产生松动 和磨损。此外,加强锅炉的日常检修和维护工作,及时 发现并处理磨损严重的部位,可以有效延长锅炉的使用 寿命。(3)加装防护件与改善材料性能。在易受磨损的 部位加装防护件,如耐磨衬板、防磨喷涂等,可以显著 提高锅炉的耐磨性能。同时,选用耐磨性能更好的材料 制造受热面和耐火材料, 也是预防磨损的有效手段。例 如,采用高铬铸铁或镍基合金等耐磨材料制作受热面, 可以大大降低磨损速率。

3.2 结焦故障的预防对策

结焦故障主要由温度过高、物料循环系统密封性不足以及煤种与粒径配比不当引起。(1)优化燃烧调整与温度控制。合理调整燃烧参数,如给煤量、风量等,以控制床温和炉膛出口温度,避免温度过高导致焦炭形成。同时,加强对炉膛温度的监测和控制,确保温度在安全范围内波动。当发现温度异常升高时,应立即采取

措施降低温度,防止结焦的发生。(2)确保物料循环系统的密封性。物料循环系统的密封性对于防止漏风和燃烧不充分至关重要。应定期检查和维护物料循环系统的密封部件,确保其完好无损。一旦发现漏风现象,应立即采取措施进行修复,以防止局部氧气浓度升高导致燃烧不充分和结焦。(3)加强点火前的煤种与粒径配比控制。点火前应根据煤种特性和锅炉设计要求,合理配比煤种和粒径。避免使用易结焦的煤种和过大的煤粒。同时,加强对煤质的监测和分析,根据煤质的变化及时调整配比方案,以确保燃烧的稳定性和安全性^[4]。

3.3 旋风分离器效率下降的预防对策

旋风分离器是CFB锅炉中的关键部件,其效率直接 影响锅炉的燃烧效率和受热面的安全。旋风分离器效率 下降主要由内壁磨损、结构不合理以及风量配比不当等 原因引起。(1)定期检查与维修分开器内壁。定期对旋 风分离器的内壁进行检查和维修,及时修复磨损和塌落 部位。同时,加强对分开器内壁的清洁工作,防止积灰 和结焦导致分离效率下降。(2)优化分开器结构与尺寸 设计。根据锅炉的实际情况和运行需求,优化旋风分离 器的结构和尺寸设计。通过改进分开器的入口和出口结 构,提高气流的均匀性和颗粒的分离效率。同时,合理 设置分开器的尺寸参数,以确保其适应不同工况下的运 行需求。(3)加强风量配比与循环灰量的控制。合理调 整旋风分离器的风量配比和循环灰量, 以确保进入分离 器的气流速度适中、颗粒浓度均匀。通过加强风量配比 的控制,可以提高分离效率并降低能耗。同时,加强对 循环灰量的监测和控制,确保灰量的稳定和适中,以避 免对分离效率产生不利影响。

3.4 其他故障的预防对策

除了磨损、结焦和旋风分离器效率下降外,CFB锅炉还可能遇到其他故障,如炉膛爆炸、锅炉水位异常、给煤系统故障等。(1)加强锅炉运行监控与管理。构建完备的运行监控系统,实时监测温度、压力、水位、风量等关键参数,利用数据分析及时察觉并处置异常,

从源头遏制故障。同时,完善设备台账,制定科学检修 计划,加强日常维护保养,确保设备正常运转、及时维 修。此外,严格制定操作规程与安全管理制度,明确各 级人员职责和操作规范。(2)提升操作人员的技术水平 与应急处理能力。操作人员的技术水平和应急能力直接 影响锅炉运行安全。定期组织培训演练,内容涵盖锅炉 结构原理、常见故障诊断处理及安全操作规范等,使其 熟练掌握锅炉运行特性与故障处理流程,切实提高实际 工作中的应变和处理效率。(3)完善锅炉安全保护装置 与制度。构建完善的安全保护装置体系,配备水位、超 温、压力等报警保护装置,故障发生时及时预警,便于 操作人员紧急处置。加强对保护装置的日常维护检查, 保障其性能良好。同时,完善安全管理制度,明确安全 职责与操作要求,强化制度执行与监督,为锅炉安全运 行提供坚实保障。

结束语

综上所述,火电厂循环流化床锅炉的常见故障对其稳定运行构成了严峻挑战,但通过合理的预防对策,我们可以有效减少这些故障的发生。从控制运行参数、优化锅炉设计到加强日常维护和检修,每一步都至关重要。未来,随着技术的不断进步和创新,我们有理由相信CFB锅炉的可靠性和耐用性将得到进一步提升。火电厂应持续关注CFB锅炉的运行状态,不断优化预防策略,确保其在安全、高效的状态下为电力供应做出贡献。

参考文献

- [1]陈好卫.关于火电厂循环流化床锅炉的常见故障与预防对策探讨[J].中国设备工程,2023,(24):214-215.
- [2]李文江.关于火电厂循环流化床锅炉的常见故障与 预防对策探讨[J].建筑技术科学,2024,(03):36-37.
- [3]姬慧强.火电厂循环流化床锅炉的常见故障与预防对策探讨[J].电力系统及自动化,2021,(12):122-123.
- [4]吕德君.火电厂循环流化床锅炉的常见故障与预防对策探究[J].电力系统及自动化,2025,(09):91-92.