5G通信信息技术在物联网时代的应用探讨

冯 伟

贵阳市城市轨道交通运营有限公司 贵州 贵阳 550002

摘 要:5G通信信息技术在物联网时代展现出巨大潜力,通过提升通信速率、降低时延及增强连接能力,推动了物联网应用的深化。本文探讨了5G在物联网中的抗干扰方法、专网定制化需求、共存化及网络切片等关键技术,并分析了SDN/NFV技术在物联网中的应用,以及5G如何助力智慧医疗、智能交通、农林植保等领域的发展。最后,展望了物联网在5G背景下加快商业化进程、促进产业链发展的广阔前景。

关键词:5G通信:信息技术:物联网时代:应用探讨

引言

随着5G通信信息技术的飞速发展,物联网时代迎来了前所未有的变革机遇。5G以其高速率、低时延、大连接的特点,为物联网提供了强大的通信支撑,推动了各行业的数字化转型。本文旨在深入探讨5G通信信息技术在物联网时代的应用,分析其在提升通信效率、满足行业定制化需求、促进多领域融合等方面的作用,并展望物联网在5G背景下的未来发展前景。

1 5G 通信技术

5G通信技术,作为4G技术的自然演进与飞跃,其诞 生标志着通信技术领域的一次重大革命。5G不仅以惊 人的速度运行数据,还极大地缩减了延迟时间,同时 实现了能耗的有效降低, 为网络环境的深度拓展铺设 了坚实基础。在高连通性的环境下,5G确保了多个通信 频段间的稳定共存,显著增强了用户的流量体验,并灵 活调整了网络空间架构, 使之更加适应复杂多变的应用 场景[1]。5G技术的应用与发展,深刻丰富了泛互联网技术 的内涵,成为推动经济社会数字化转型的关键力量。在 信息化、数据化浪潮席卷全球的今天, 网络不仅是信息 传递的媒介, 更承载着促进社会发展、提升民众生活质 量的重要使命。5G技术的引入,以其卓越的能效比、高 速率传输和超强稳定性,有效应对了传统通信技术难以 克服的瓶颈问题。具体而言,5G技术的两大核心优势尤 为显著:一是其惊人的设备连接能力,支持海量机器类 通信,即便在数据洪流中也能保持网络畅通无阻,大幅 减少了网络拥堵和延迟现象,为用户带来前所未有的流 畅体验。这一特性不仅拓宽了网络覆盖范围,还降低了 运营成本,提升了整体网络效能。二是其强大的移动带 宽功能,与4G相比,5G在峰值速率上实现了质的飞跃, 为各类线上服务提供了坚实的支撑, 无论是日常业务办 理还是应急、工业、医疗等关键领域的应用,都能享受 到几乎无延迟的网络体验,极大地提升了服务效率和可靠性。

2 5G 通信信息技术在物联网时代的应用探讨

2.1 物联网通信抗干扰方法

蜂窝物联网以其低功耗、高连接性和成本优势,正 引领着物联网技术的革新, 其终端模块设计的超长待机 能力(长达10年之久)以及单扇区惊人的连接数(超过 10万), 为物联网的广泛应用奠定了坚实基础。随着社 会经济的不断进步,蜂窝物联网依托LTE技术的成熟产业 链及其全球覆盖优势,正加速推动广域物联网的建设进 程。在实现大规模覆盖与节能降耗的目标下, 多种技术 模式如独立载波、LTE带内及LTE保护带等应运而生,它 们各自适应不同的应用场景,对潜在的干扰因素及应对 策略需进行细致分析。物联网通信中的干扰问题,如同 暗流涌动,直接威胁到物理层信号传输的稳定性,导致 误码率攀升,直至信号中断,严重影响用户体验。尤其 对于物联网这类需长期稳定运行的系统而言, 通信干扰 不仅增加掉线率,还加剧了系统负荷。物联网的信道容 量与信噪比息息相关,在带宽既定的情况下,任何干扰 都将导致信道容量缩水。随着科技的飞速发展,物联网 技术已深入工业、医疗、家居等多个领域, 展现出巨大 的应用潜力。特别是广域物联网的兴起, 更是激发了对 抗干扰技术的迫切需求,推动着该领域的技术研发与应 用推广。面对日益复杂多变的通信环境,物联网抗干扰 技术的不断精进,成为保障物联网系统稳定运行、促进 物联网行业持续繁荣的关键所在。

2.2 专网行业定制化需求

5G技术的引入,以其卓越的大带宽特性,赋予了物 联网行业前所未有的精准定位能力,实现了3至5米范围 内的精确位置追踪。这一技术革新不仅提升了物联网应 用的高精度与全场景适应性,还以其易维护、低成本的 特性, 显著降低了网络运维的复杂度和总体成本, 增强 了物联网解决方案的商用竞争力。在高精度网络授时技 术的加持下,物联网行业正经历着深刻的数字化变革。 这一技术为电力、工业控制、交通运输、自动驾驶等多 个关键领域提供了强大的同步与高效协同能力,确保了 物联网系统运行的稳定性与可靠性。5G网络的广泛覆盖 特性, 使得基站部署更加灵活多变, 有效保障了专业物 联网络的无缝连接需求。无论是城市密集区域还是偏远 地区,都能享受到稳定可靠的5G服务。5G网络内置的端 到端OoS监控机制,能够实现对网络质量的精准检测与保 障,确保物联网大连接场景下的数据传输效率与服务质 量。相较于传统网络, 5G网络在端到端时延、抖动等关 键性能指标上展现出显著优势,通过实时测量手段,不 仅确保了网络资源的有效利用,还为用户提供了可视、 可管、可控的网络管理体验。这种能力使得物联网业务 服务得以更加稳定、可靠地运行, 为行业用户提供了可 承诺、可保障的服务质量。

2.3 物联网共存化、网络切片、综合运维

随着5G网络的逐步成熟,预计到一年左右,其广 覆盖能力将实现无缝部署, 为物联网带来前所未有的变 革。然而,在这一转型过程中,4G与5G物联网的共存化 成为了一个不可回避的现实问题。运营商在推进5G建设 的同时,仍需维护现有的4G网络,以确保服务的连续性 和稳定性。面对4G与5G混合运维的复杂挑战,综合运 维体系亟需升级以适应这一变化。5G网管与云平台的深 度融合,成为实现高效运维的关键。通过云网业务一体 化,运营商可以实现对网络资源的全面监控、灵活编排 和即时升级,极大地提升运维效率和响应速度[2]。在综合 运维中, 网元共管与Pool管理策略的实施, 使得不同网络 层级的资源得到统一管理和调度,促进了资源的优化配 置。同时,支持虚拟资源的编排能力,为5G网络切片技 术的应用提供了坚实基础。SDN(软件定义网络)技术 的引入, 更是让5G部署切片网络配置和端到端切片的部 署管理变得高效而灵活,满足了不同行业对网络的差异 化需求。

2.4 SDN/NFV技术

在5G通信技术的宏伟蓝图中,SDN(软件定义网络)与NFV(网络功能虚拟化)技术扮演着基石般的角色,它们不仅是技术进步的产物,更是推动5G网络架构革新的关键力量。SDN通过解耦控制平面与数据转发平面,实现了网络资源的灵活调度与智能管理,而NFV则通过将传统网络设备的功能软件化,运行在通用硬件上,极大地增强了网络的灵活性和可扩展性。在5G通

信技术的构建过程中,SDN与NFV的深度融合,为网络的分层管理提供了可能,控制层、管理层、应用层的清晰划分,使得网络管理更加高效、便捷。这种架构的引入,不仅简化了通信网络的管理流程,还实现了多层次、多规模的自动调整与优化,有效减少了人工干预,提升了网络系统的整体效能。更为重要的是,SDN/NFV技术的运用,为5G通信技术的无线信号覆盖性能带来了显著提升。通过构建虚拟网络结构,可以根据不同行业、不同场景的需求,灵活定制网络解决方案,实现网络资源的精准投放与高效利用。这种高度灵活性和可定制性,使得5G网络能够更好地服务于各行各业,满足其多样化的网络需求。

2.5 普及智慧医疗

智慧医疗作为医疗卫生领域的新兴趋势, 正依托物 联网与5G通信技术的融合创新,展现出广阔的发展蓝 图。这一融合不仅携手云计算、人工智能、虚拟现实等 前沿科技,共同应对当前医疗卫生体系中的诸多挑战, 还精准对接了民众日益增长的健康医疗需求, 开启了 医疗服务的新篇章。除了引领远程手术等尖端医疗实践 外,智慧医疗的应用潜力远不止于此。在患者服务层 面,智能导诊系统凭借其高效便捷的特性,极大地简化 了就诊流程,同时,结合可穿戴设备与远程医疗服务软 件,患者得以享受足不出户的看病体验,医院的服务效 率与患者满意度均显著提升。在医疗环境管理方面,智 慧医疗同样发挥着不可替代的作用。通过密布的传感器 网络, 手术室、ICU等高标准环境得以全天候、高精度的 监测,确保医疗环境持续达标,为病患康复筑起坚实屏 障。此外, 医疗设备的安全管理也迎来了智能化升级, 内置的传感器实时追踪设备使用状态,有效预防因设备 故障引发的医疗风险,为医疗安全保驾护航。

2.6 智能交通

智能交通的兴起正悄然重塑出行生态,其运营商主导的模式正引领着市场向更加安全、便捷、高效、经济且环保的方向迈进。这一变革得益于国家对于创新技术的积极支持与政策引导,使得自动驾驶技术得以迅速落地,并逐渐融入大众生活。自动驾驶出租车、公交车等新型交通工具,不再是科幻电影中的场景,而是成为了北京、上海、广州、深圳等八大城市居民日常出行的真实选择。百度作为行业先锋,已成功在多个城市部署了自动驾驶出行服务,如北京、重庆、阳泉等地已率先实现商业化运营,累计服务乘客超过五十万人次,这一数字不仅彰显了技术的成熟度与市场的接受度,也预示着智能交通时代的大幕正徐徐拉开。尤为值得一提的是,

去年第四季度,百度旗下的自主出行服务平台"萝卜快跑"更是实现了乘客订单的飞跃式增长,约21.3万的订单量,近乎于前一季度的两倍,这一亮眼成绩无疑为智能交通的未来发展注入了强劲动力。

2.7 农林植保

在农林植保领域, 无人机技术的革新正引领着植保 作业的现代化进程。无人机凭借其强大的负载能力,实 现了植保作业的全面机械化,极大地提升了作业效率与 精准度。同时,5G网络的融入,如同为无人机插上了翅 膀, 使得无人机与数据中心之间的数据交换变得前所未 有的迅速与稳定。无人机在飞行过程中,通过其负载的 传感器与设备,实时采集农田的土壤湿度、作物生长状 况及病虫害情况等关键数据。这些数据通过5G网络的高 速传输,瞬间抵达数据中心,为后续的决策与分析提供 了坚实的基础。云平台作为数据处理与分析的核心,对 无人机采集的实时数据进行深度挖掘与智能分析。借助 先进的算法与模型, 云平台能够迅速识别出农田中的潜 在问题,如病虫害的早期迹象、土壤养分的不足等,并 生成相应的解决方案。更重要的是, 云平台还支持数据 中心的远程操作功能。这意味着,无论管理人员身处何 地,都能通过电脑或移动设备远程监控无人机的作业情 况,实时调整作业策略,确保植保作业的顺利进行。

3 物联网在5G通信技术背景下的发展前景

3.1 加快商业化进程

在物联网产业的蓬勃发展中,加速5G通信技术的商业化进程成为了关键一环。这要求我们不仅要充分利用5G技术的高速率、低时延、大连接等特性,还需巧妙融合各种通信技术,创新通信策略,以高效稳定的步伐推动物联网产业链的转型升级^[3]。通过将物联网产业链与商业化进程深度融合,明确发展导向,我们能够对传统通信技术进行全面革新,为物联网用户带来前所未有的通信体验,进而赢得市场的广泛认可与支持。5G通信技术在物联网中的深度应用,不仅是对现有通信能力的升级,更是对用户体验的颠覆性重塑。它以一种全新的交互方式,让通信变得更加智能、便捷,深刻影响着人们的日常生活方式。展望未来,随着5G技术的不断成熟与

拓展,多元化连接与发展将成为可能,这将为物联网产业链注入强劲动力,开启无限可能。加快物联网产业链的商业化进程,不仅是技术发展的必然趋势,也是市场需求的迫切呼唤。

3.2 加快物联网产业链发展速度

当前,物联网产业链正处于高速发展的黄金时期, 其迅猛势头离不开通信技术,尤其是5G技术的强力驱动。过去五年间,物联网行业的复合增长率持续保持在 29%以上的高位,市场潜力巨大,前景广阔。这一过程 中,各类专业设备的不断完善,不仅提升了物联网的整 体性能,也极大地丰富了用户体验。为了进一步加速物 联网产业链的发展,我们必须充分利用5G通信技术的优势,提升其时效性、准确性和可靠性,从而全面优化互 联网信息传输的效率。5G技术的应用,不仅能够有效提 升数据传输速度,降低延迟,还能为物联网产业链注人 新的活力,推动其向更高层次、更广领域拓展。为了实 现这一目标,我们需要凝聚行业力量,鼓励专业人员和 通信技术公司深入研究5G通信技术在物联网中的应用效 果,结合当前发展现状及未来趋势,不断创新和完善5G 通信技术的应用实践。

结束语

综上,5G通信信息技术为物联网的广泛应用提供了 坚实的技术基础,其在抗干扰、专网定制、网络切片等 方面的创新应用,不仅提升了物联网的性能和可靠性, 还推动了智慧医疗、智能交通、农林植保等领域的智能 化发展。展望未来,随着5G技术的不断成熟和物联网产 业链的逐步完善,物联网将迎来更加广阔的发展空间, 为人类社会带来更加便捷、智能的生活方式。

参考文献

[1]张倩,林美顺.5G技术背景下智能物流的创新及发展 [J].营销界,2021(25):61-62.

[2]苏荣亮,5G通信技术在现代物联网产业链发展中的推动作用探讨[J].无线互联科技,2021(12):1-2.

[3]黄旭凤.5G通信技术背景下物联网应用发展窥探研析讨论[J].科技与创新,2021(14):38-39,43.