大学计算机基础课程教学方法探索

赵 明 汉中职业技术学院 陕西 汉中 723000

摘 要:通过深入探索了大学计算机基础课程教学方法的创新与实践,旨在提升教学质量与学生学习成效。通过项目驱动、问题导向等教学模式的引入,结合现代教育技术工具的运用,有效激发了学生的学习兴趣与主动性。本文还强调教学资源与环境构建的重要性,以及教学评价体系的完善对于持续改进教学质量的关键作用。整体而言,为大学计算机基础课程的教学改革提供有益的思路与策略。

关键词: 大学计算机; 基础课程; 教学方法

1 大学计算机基础课程的重要性

大学计算机基础课程的重要性不言而喻, 它不仅为 学生搭建了通往数字时代的基本桥梁, 更是培养现代社 会所需综合素质与创新能力的重要基石。第一、计算机 基础知识是信息时代的通行证,随着科技的飞速发展, 计算机技术已经渗透到社会生活的每一个角落, 从日常 办公、信息交流到科学研究、企业管理, 无一不依赖于 计算机技术的支持。掌握计算机基础知识, 意味着学生 能够更高效地利用信息技术工具,提升学习、工作和生 活的效率与质量。第二、计算机基础课程有助于培养学 生的逻辑思维与问题解决能力,编程、算法设计等课程 内容,要求学生在面对复杂问题时,能够抽丝剥茧、逐 步分解, 最终找到解决问题的有效路径。这种训练不仅 有助于学生在计算机领域深入学习, 更能够迁移到其他 学科领域,成为他们面对未来挑战时的宝贵财富。第 三、计算机基础学习为学生打开了探索新技术、新领域 的大门,随着大数据、人工智能、云计算等前沿技术的 兴起, 计算机科学已经成为推动社会进步的重要力量。 通过基础课程的学习,学生可以建立起对这些新兴技术 的初步认知,激发进一步学习的兴趣与热情,为未来的 专业选择、职业规划乃至人生道路开辟更广阔的空间[1]。 第四、计算机基础课程还强调团队合作与沟通能力的培 养,在项目开发、编程竞赛等实践活动中,学生需要与 团队成员紧密合作, 共同完成任务。这一过程中, 学生 将学会如何有效沟通、协调分歧、共享资源,这些软技 能同样对于他们的个人成长与职业发展至关重要。

2 大学计算机基础课程教学现状分析

大学计算机基础课程的教学现状分析呈现出既有机 遇也有挑战的多维面貌。

从教学内容来看,随着计算机技术的迅猛发展,计 算机基础课程的教学内容日益丰富,涵盖了软硬件理 论、操作系统、网络原理、编程语言等多个方面。这种 变化使得学生能够接触到更广泛、更前沿的计算机知 识,但同时也带来了教学内容与有限教学课时之间的矛 盾。教师需要在有限的时间内完成大量教学任务,有时 不得不压缩课程内容或加快教学进度,这可能影响学生 对知识的深入理解和掌握。在师资队伍方面,大学计算 机基础课程的教师面临着较大的压力, 他们不仅需要不 断更新自己的知识储备,紧跟技术发展的步伐,还需要 花费大量精力进行教学方法的创新和实践,由于计算机 基础课程教师往往被视为"边缘人物",他们在职业发 展、科研机会、进修资源等方面可能得不到充分的支 持,这在一定程度上影响了他们的教学积极性和教学质 量。学生的学习状态也是影响计算机基础课程教学的重 要因素,由于新生计算机水平参差不齐,以及部分学生 缺乏学习理论课的兴趣和实践课的明确目标,导致教学 效果难以达到预期,传统教学模式中教师主导、学生被 动接受的教学方式也限制了学生创新思维和自主学习能 力的发展。

3 创新教学方法在大学计算机基础课程中的应用

3.1 项目驱动教学模式探索

在大学计算机基础课程中,项目驱动教学模式是一种创新且高效的教学方法,它强调通过实际项目的开发与实施来引导学生学习理论知识,并在实践中深化理解。在项目驱动教学模式下,教师首先根据课程内容设计一系列具有挑战性和实用性的项目任务,这些项目既覆盖了计算机基础课程的核心知识点,又贴近现实生活中的应用场景。学生被分组形成项目团队,每个团队负责一个或多个项目的规划、设计、实现和展示。在项目执行过程中,教师扮演引导者和辅助者的角色,提供必要的指导和支持,鼓励学生自主学习、团队协作和问题解决。

3.2 问题导向学习实践

问题导向学习(Problem-Based Learning, PBL)是 另一种在大学计算机基础课程中值得推广的教学方法。 在问题导向学习实践中,教师首先设计一系列与课程内 容紧密相关的问题情境,这些问题既可以是理论上的疑 惑,也可以是实际应用中的挑战。学生则被鼓励以小组 合作的形式,围绕这些问题展开讨论、搜集资料、分析 问题并尝试提出解决方案。在这个过程中,教师需要适 时地给予引导,帮助学生梳理思路、明确方向,并鼓励 他们大胆尝试、勇于创新。问题导向学习实践不仅能够 促进学生对计算机基础知识的深入理解和掌握,还能培 养他们的批判性思维、创新思维和自主学习能力。

3.3 教育技术工具在基础课程中的运用

随着教育技术的快速发展,各种新型的教学工具和 平台为大学计算机基础课程的教学提供了更多可能性。 多媒体教学资源如PPT、视频教程、在线模拟实验等在大 学计算机基础课程中得到了广泛应用。这些资源能够直 观、生动地展示计算机技术的原理和应用,帮助学生更 好地理解抽象概念和技术细节,通过在线平台,学生可 以随时随地进行自主学习和复习巩固,提高了学习的灵 活性和便捷性。互动式学习工具如在线编程环境、虚拟 实验室、在线测验系统等也为大学计算机基础课程的教 学带来了革命性的变化,这些工具能够模拟真实的编程 环境和实验场景, 让学生在虚拟环境中进行实践操作和 练习,通过即时的反馈和评估机制,学生能够及时了解 自己的学习情况和不足之处, 并采取相应的措施进行改 进和提升。一些智能教学系统还能够根据学生的学习行 为和表现进行个性化推荐和教学调整,为每位学生量身 定制最适合他们的学习路径和教学资源[2]。

4 教学资源与环境构建

4.1 实验室建设与教学设备更新

在大学计算机基础课程的教学中,实验室建设与教学设备的更新是保障教学质量、提升学生学习体验的重要基础。随着计算机技术的快速发展,教学实验室必须紧跟时代步伐,不断升级和完善。实验室建设方面,要确保实验室的空间布局合理,能够满足不同教学需求,这包括足够的计算机设备、舒适的座椅布局、良好的通风照明条件以及必要的安全防护措施,实验室还应配备先进的网络设备,确保学生能够顺畅地进行网络学习、资源共享和在线交流。教学设备的更新则是实验室建设的核心环节,随着计算机硬件和软件的不断更新换代,教学设备也需要定期进行升级和替换。这包括高性能的计算机主机、大容量的存储设备、高分辨率的显示器以

及最新的操作系统和软件开发工具等。通过不断更新教学设备,可以确保学生接触到最前沿的计算机技术,提高他们的实践能力和创新能力。实验室还应建立完善的设备管理制度和维护机制,确保设备的正常运行和长期使用。这包括定期对设备进行清洁、检查和维修,及时处理设备故障和损坏情况,以及为教师和学生提供必要的技术支持和培训。

4.2 教材教辅资源的选择与使用

教材教辅资源是大学计算机基础课程教学的重要支 撑。选择合适的教材教辅资源,对于提高教学质量、帮 助学生掌握计算机基础知识具有重要意义。在教材选择 方面,应注重教材的权威性、时效性和实用性。权威性 是指教材应出自知名出版社或权威专家之手,内容准确 可靠; 时效性是指教材应及时反映计算机技术的最新发 展动态和趋势; 实用性则是指教材内容应贴近实际应用 场景,便于学生理解和掌握。除了教材之外,教辅资源 也是不可忽视的一部分, 教辅资源包括习题集、实验指 导书、案例分析、在线课程等,它们可以帮助学生巩固 课堂知识、拓展学习视野、提高实践能力。在选择教辅 资源时,应注重其针对性、系统性和可操作性,确保它 们能够满足学生的学习需求并帮助他们取得更好的学习 效果。在教学过程中, 教师应充分利用教材教辅资源, 合理安排教学内容和进度,还应鼓励学生自主学习、积 极思考和探索新知识。

4.3 师资队伍建设与培训

师资队伍建设是大学计算机基础课程教学质量提升 的关键。只有拥有一支高素质、专业化的师资队伍,才 能确保教学质量和教学效果的不断提高。在师资队伍 建设方面,应注重引进和培养相结合。一方面,要积极 引进具有丰富教学经验和科研能力的优秀人才加入教学 团队;另一方面,也要加强对现有教师的培训和提高工 作,帮助他们不断更新知识结构、提升教学水平和科研 能力。培训是提高教师素质的重要途径,学校应定期组 织教师参加各种形式的培训活动,包括教学研讨会、学 术交流会、技术培训班等。这些培训活动可以帮助教师 了解最新的教学理念和方法、掌握最新的计算机技术和 工具、拓宽学术视野和思路[3]。学校还应建立健全的教师 激励机制和评价体系,通过设立教学奖励、职称评审、 绩效考核等措施,激发教师的工作热情和创造力;通过 学生评教、同行评议等方式, 客观评价教师的教学质量 和效果,为教师提供改进和提高的方向和动力。

5 大学计算机基础课程教学评价体系建设

5.1 评价指标体系设计

在大学计算机基础课程的教学评价体系建设中,设 计科学、全面、合理的评价指标体系是首要任务。评价 指标体系需涵盖多个维度,包括但不限于教学内容、教 学方法、教学资源、学生学习态度、实践操作能力、创 新思维与问题解决能力等。这些维度相互关联, 共同构 成了对课程教学效果的全面评估。在教学内容方面,应 关注课程内容的时效性、前沿性、系统性和实用性。教 学方法则涉及教学手段的多样性、互动性和有效性,包 括讲授、讨论、实验、项目等多种形式的运用。教学资 源评价则关注实验室条件、教学设备、教材教辅资源等 硬件设施的完善程度以及网络教学资源、在线学习平台 等软件资源的丰富度和易用性。学生学习态度是评价学 生学习成效的重要指标之一,包括学生的学习兴趣、学 习动力、自主学习能力和团队协作能力等。实践操作能 力则直接反映了学生对计算机技术的掌握程度和应用能 力。创新思维与问题解决能力则是评价学生综合素质的 重要方面, 体现了学生在面对复杂问题时能够运用所学 知识进行分析、判断和解决问题的能力。

5.2 课程评估方法与学生表现评价

课程评估方法与学生表现评价是教学评价体系的具体实施环节。课程评估方法应多样化、灵活化,以全面、准确地反映课程教学效果和学生的学习成效。课程评估方法包括定量评估和定性评估两种方式。定量评估主要通过考试、测验、作业等形式进行,以分数或等级的形式量化学生的学习成果。定性评估则通过课堂观察、学生反馈、项目报告等形式进行,以文字描述或等级评定的方式评价学生的学习态度、实践能力、创新思维等方面的表现[4]。在学生表现评价方面,应注重过程评价与结果评价相结合,过程评价关注学生在学习过程中的表现和努力程度,包括学习态度、课堂参与度、团队协作等方面。结果评价则关注学生的学习成果和最终表现,包括考试成绩、项目成果、论文发表等方面。

5.3 持续改进与质量保障

持续改进与质量保障是教学评价体系建设的最终目标。通过持续收集和分析教学评估数据,发现教学中存

在的问题和不足,并采取有效的措施进行改进和优化, 是提高教学质量和教学效果的关键。通过定期的教学 检查、学生评教、同行评议等方式,对教学质量进行全 面、客观的监控和评估,还应建立教学质量反馈机制, 及时将评估结果反馈给教师和学生,并督促他们进行改 进。教师是教学质量的关键因素之一。通过组织教学研 讨会、教学技能培训、教学案例分享等活动,帮助教师 提高教学水平和教学能力。同时还应为教师提供必要的 教学资源和支持条件,如实验室设备、教学软件、在线 学习平台等。随着计算机技术的不断发展,课程内容也 需要不断更新和优化以适应时代的需求。通过引入最新 的教学理念和教学方法、更新教学内容和案例、加强实 践教学环节等方式,提高课程的时效性和实用性。

结束语

大学计算机基础课程教学方法的探索是一个持续且 富有挑战的过程。通过不断创新与实践,不仅能够提升 教学质量,更能激发学生的创新思维与实践能力。未 来,应继续深化教学改革,加强师资队伍建设,完善教 学评价体系,为培养更多优秀的计算机人才贡献力量。 也希望本文的研究能为相关领域的同仁提供参考与借 鉴,共同推动大学计算机基础课程教学迈向新的高度。

参考文献

[1] 田建学,朱郑州,张珏,等.大学计算机基础课程 思政教学方法探索[J].高教学刊,2024,10(9):102-106. DOI:10.19980/j.CN23-1593/G4.2024.09.025.

[2]王祖山,谭雪霏.课程思政从"悬浮"到"落地"的实践 策略[J].中南民族大学学报(人文社会科学版).2023,43(4). DOI:10.19898/j.cnki.42-1704/C.20221020.01.

[3]曾昭平,付剑锋,郑亮,等.计算机组成原理课程与思政教育结合的研究[J].高教学刊.2022,8(26).DOI:10.19980/j.CN23-1593/G4.2022.26.022.

[4]何钦铭,王浩.面向新工科的大学计算机基础课程体系及课程建设[J].中国大学教学.2019,(1).39-43. DOI:10.3969/j.issn.1005-0450.2019.01.009.