智慧风电体系架构研究

崔 涛 王用强 陈希名 杨远鹏 何宇哲 华能新能源股份有限公司辽宁分公司 辽宁 沈阳 110000

摘 要:智慧风电体系融合了信息技术、通信技术和自动化技术,高效开发风能并实现智能运维。该体系以数据为核心,通过多层次技术融合提供详实数据基础,实现数据的实时高效传输与处理。它能实时监测风电机组、气象和地理信息,优化风电场布局与运维,提升风能利用效率。未来,智慧风电将强化数据挖掘、智能化运维、多能互补、能源互联网构建及绿色转型,推动风电产业向高效、灵活、环保方向发展,实现可持续发展目标。

关键词:智慧风电;体系架构;未来发展趋势

引言

随着全球能源需求增长和环保意识提升,风能作为清洁可再生能源备受瞩目。但传统风电场运维管理效率低下、成本高昂,限制了风能利用。因此构建智慧风电体系架构,实现智能化管理和运维,成为提高风能利用效率、降低成本的关键。本文深入研究智慧风电体系架构,探讨其感知、传输、数据处理等关键技术,以及未来在数据挖掘、智能化运维、多能互补等方面的发展趋势,旨在推动风电产业向更高效、灵活、环保方向迈进。

1 智慧风电体系架构概述

智慧风电体系架构是风电行业迈向现代化、智能化 的关键所在,它深度整合了信息技术、通信技术以及 自动化技术,旨在实现风能资源的高效开发与智能运 维[1]。这一体系架构以数据为核心,通过多层次、多维 度的技术融合,推动风电产业向更加高效、灵活、可持 续的方向发展。智慧风电体系的核心在于构建一个集成 化、智能化的运营平台。该平台从风电设备层出发,集 成了包括风电机组、传感器网络、智能控制系统等在内 的多种硬件设备。这些设备通过高精度传感器实时采集 风速、风向、温度、振动等关键运行参数, 为整个风电 场的运行管理提供了详实的数据基础。在数据采集与传 输层面,智慧风电体系利用先进的通信技术,如物联网 (IoT)、5G等,实现了数据的实时、高效传输。这些 数据被汇聚到云端或边缘计算节点, 为后续的数据处理 与分析提供了强有力的支撑。数据处理与分析层是运用 大数据处理、机器学习、人工智能等先进技术, 对海量 数据进行深度挖掘与分析,揭示风电场的运行规律,预 测风电输出功率, 优化风电场布局与运维策略。基于数 据处理与分析的结果,决策与控制层能够实现对风电场 的智能调度与控制。通过智能算法,它可以根据实时风 速、风向等信息,自动调整风电机组的运行状态,最大 化风能利用效率。它还能对风电场的运维进行智能化管理,提前预警潜在故障,降低运维成本。用户接口层以直观、易用的方式呈现风电场的运行状态与运维信息,为管理人员提供了便捷的决策支持工具。

2 感知层

2.1 风电机组状态感知

风电机组状态感知是智慧风电体系架构中感知层的 核心功能之一,它对于确保风电场的安全、高效运行具 有重要意义。通过先进的传感器技术和数据分析方法, 风电机组状态感知能够实时监测风电机组的运行状态, 及时发现潜在故障, 为风电场的运维管理提供科学依 据。在风电机组状态感知中, 传感器发挥着至关重要的 作用。这些传感器被部署在风电机组的关键部位,如叶 片、齿轮箱、发电机等,能够实时采集各种运行参数, 如振动、温度、压力等。这些参数反映了风电机组的健 康状态,是判断其是否存在故障的重要依据。随着物联 网、大数据等技术的不断发展,风电机组状态感知的精 度和效率也在不断提高。通过将这些传感器采集的数据 进行实时传输和处理, 可以实现对风电机组运行状态的 实时监测和预警。当某个参数超过预设的阈值时,系统 会立即发出预警信号,提示运维人员进行检修和维护, 从而避免故障的发生或扩大。风电机组状态感知还可以 结合机器学习、人工智能等先进技术进行深度分析。通 过对历史数据的挖掘和学习, 可以建立风电机组运行状 态的预测模型,实现对未来运行状态的预测和评估。

2.2 气象环境感知

气象环境感知主要依赖于多种气象监测设备和技术,包括风速计、风向标、温湿度传感器、气压计以及雷达、卫星等遥感设备。这些设备能够实时采集风电场所在区域的风速、风向、温度、湿度、气压等气象参数,以及云层分布、降水情况等天气信息。通过对这些

气象数据的处理和分析,气象环境感知系统能够精确预测风电场未来一段时间内的气象变化,为风电场的运行调度提供重要参考^[2]。在风速较低或风向不利的时段,系统可以提前调整风电机组的运行状态,以减少发电损失;在极端天气条件下,系统可以发出预警信号,提示运维人员采取必要的防护措施,确保风电场的安全运行。气象环境感知还能够为风电场的发电效率优化提供支持。通过对气象数据的深入分析,可以找出影响风电场发电效率的关键因素,并制定相应的优化策略。在风速较高的时段,可以通过调整风电机组的叶片角度或转速,进一步提高发电效率;在风速较低的时段,则可以通过优化风电场的布局或采用先进的储能技术,来减少发电损失。

2.3 地理信息感知

地理信息感知是智慧风电体系架构感知层的重要组 成部分,它利用地理信息系统(GIS)及相关技术,对 风电场及其周边地区的地理信息进行全面、精确的获取 与分析。这一功能不仅为风电场的规划、设计与建设提 供了基础数据支持,还在风电场的运维管理和安全防护 中发挥着关键作用。(1)地理信息感知主要涵盖地形地 貌、地质结构、植被覆盖、土地利用、交通网络、水系 分布等多个方面。通过高精度的地理信息采集技术,如 卫星遥感、无人机航拍、地面测量等,可以获取风电场 及其周边地区的详细地理信息。这些信息被整合到GIS 平台中,形成直观、易用的地理信息数据库。(2)在风 电场的规划与设计阶段, 地理信息感知为选址、布局和 风电机组选型提供了科学依据。通过对地形地貌、风速 风向等自然条件的综合分析, 可以选出最适合建设风电 场的区域;通过对地质结构的评估,可以确保风电场建 设的安全性和稳定性。(3)在风电场的运维管理中,地 理信息感知同样发挥着重要作用。通过实时监测风电场 周边的交通状况、水系变化等,可以及时发现可能影响 风电场运行的潜在风险,并采取相应的应对措施。地理 信息感知还可以为风电场的应急响应提供支持, 如确定 最佳的救援路线、评估灾害影响范围等。(4)地理信息 感知还可以与气象环境感知、风电机组状态感知等其他 感知功能相结合,形成更加全面、智能的风电场监测体 系。通过多源信息的融合与分析,可以进一步提高风电 场的运行效率、安全性和可靠性。

3 传输层

3.1 有线传输技术

有线传输技术作为智慧风电体系架构中传输层的关键组成部分, 扮演着数据传输的重要角色。它通过物理

介质(如电缆、光纤等)将风电设备层采集的数据和信 息高效地传输到数据处理和分析层,是实现风电场智能 化管理不可或缺的一环。有线传输技术以其高速度、高 带宽、稳定性和可靠性等显著优势, 在智慧风电体系中 得到了广泛应用。光纤通信作为有线传输技术中的佼佼 者,具有极高的带宽和极低的传输损耗,同时抗干扰能 力强,适用于长距离数据传输和高速率通信。在智慧风 电体系中, 光纤通信常被用于风电场内部的数据传输, 以及风电场与远程数据中心之间的通信。除了光纤通信 外,其他有线传输技术如双绞线、同轴电缆等也在智慧 风电体系中发挥着重要作用。这些技术虽然带宽和传输 速度可能略逊于光纤通信,但在特定应用场景下(如短 距离通信、低成本要求等)仍具有独特的优势。在智慧 风电体系中,有线传输技术不仅负责数据传输,还承担 着数据安全和完整性保护的重要职责。通过采用先进的 加密技术和传输协议,有线传输技术能够确保数据在传 输过程中的安全性和可靠性, 防止数据泄露和篡改。

3.2 无线传输技术

无线传输技术在智慧风电体系架构中同样扮演着至 关重要的角色。它利用电磁波等无线介质,实现了数据 的远程、实时、高效传输, 为风电场的智能化管理提供 了极大的便利。在智慧风电体系中, 无线传输技术具有 显著的优势。(1)它突破了有线传输的物理限制,使得 数据传输不再受线缆长度、布线难度等因素的制约。这 对于风电场这种地理分布广泛、设备众多的应用场景来 说,无疑是一个巨大的优势[3]。(2)无线传输技术具有 高度的灵活性和可扩展性。随着风电场的扩建和设备的 增加,无线传输网络可以轻松地扩展和升级,满足新的 数据传输需求。(3)无线传输技术还具有成本效益。与 传统的有线传输相比,无线传输无需铺设大量的电缆和 光纤,降低了建设和维护成本。这对于风电场这种长期 运行、需要持续投入的应用场景来说, 无疑是一个重要 的考虑因素。在智慧风电体系中, 无线传输技术常用于 风电设备层与数据处理和分析层之间的数据传输, 以及 风电场与远程监控中心之间的通信。通过采用先进的无 线通信技术,如Wi-Fi、蓝牙、ZigBee、LoRa、NB-IoT以 及5G等, 无线传输技术能够实现高速、稳定、可靠的数 据传输, 为风电场的智能化管理提供有力的支持。

4 数据层

4.1 数据存储

在智慧风电体系架构中,数据存储是数据层的核心功能之一,它负责存储、管理和维护风电场产生的海量数据。这些数据包括风电设备的运行数据、气象环境数

据、地理信息数据等,是风电场智能化管理和决策的重要依据。数据存储技术需要满足高容量、高性能、高可用性和高安全性等要求。在智慧风电体系中,常采用分布式存储、云存储等先进存储技术,以满足大规模数据存储和高效访问的需求。这些技术通过将数据分散存储在多个节点上,实现了数据的冗余备份和负载均衡,提高了数据的可靠性和访问速度。数据存储还需要考虑数据的完整性和一致性。在数据传输和存储过程中,可能会受到各种因素的影响,导致数据出现丢失、损坏或不一致的情况。需要采用数据校验、数据备份和数据恢复等技术手段,确保数据的完整性和一致性。数据存储还需要与数据处理和分析层紧密配合,实现数据的快速访问和高效利用。

4.2 数据处理与分析

数据处理与分析是智慧风电体系架构中数据层的另 一项核心功能。在风电场运行过程中,会产生大量的数 据,这些数据需要经过有效的处理和分析,才能转化为 有价值的信息,为风电场的智能化管理和决策提供科学 依据。(1)数据处理阶段,主要任务是对原始数据进行 清洗、整合和格式化,以确保数据的准确性和一致性。 这一过程中, 需要采用数据预处理技术, 如数据去重、 缺失值填充、异常值检测等,以提高数据质量。还需要 对数据进行整合,将不同来源、不同格式的数据转化为 统一的标准格式,便于后续的分析和应用。(2)数据分 析阶段,则侧重于从数据中提取有价值的信息和模式。 这包括数据挖掘、统计分析、机器学习等多种技术手 段。通过数据挖掘技术,可以发现数据中的隐藏规律和 模式;通过统计分析方法,可以对数据进行量化描述和 比较; 而机器学习技术则能够利用历史数据训练模型, 对未来的数据进行预测和分类。

5 智慧风电体系架构的未来发展趋势

智慧风电体系架构的未来发展趋势正朝着更加集成 化、智能化与可持续化的方向迈进。随着技术的不断革 新与融合,风电行业正逐步构建一个高效、灵活且环境 友好的新型能源体系^[4]。第一,智慧风电体系将更加重

视数据的价值挖掘与利用。大数据、云计算等技术的深 入应用,将使风电场的数据收集、处理与分析能力得到 显著提升。通过实时监测与分析风电设备的运行状态、 气象条件及市场需求等多维度数据,系统能够自动调整 运行策略, 优化发电效率, 同时预测并应对潜在风险, 确保风电场的稳定运营。第二,智能化技术将深度融入 风电场的运维管理。人工智能、物联网等前沿技术的应 用,将推动风电场运维向自动化、远程化方向发展。通 过智能巡检、故障诊断与预警等系统, 运维人员可以实 时掌握风电设备的健康状况,及时采取措施,减少故障 停机时间,提高运维效率与安全性。第三,智慧风电体 系将促进多能互补与能源互联网的构建。随着可再生能 源的快速发展,风电、光伏等多种能源形式将实现更加 紧密的协同与互补。智慧风电体系将作为能源互联网的 重要组成部分,与其他能源系统实现信息共享与互操 作, 共同构建一个高效、清洁、安全的能源供应网络。

结语

智慧风电体系架构通过集成化、智能化的技术手段,实现了风能资源的高效开发与智能运维,为风电产业的可持续发展提供了有力支撑。未来,随着技术的不断进步和应用的深入,智慧风电体系将更加完善,为风电场提供更加全面、智能的管理和运维服务。智慧风电体系也将与其他可再生能源实现更加紧密的协同与互补,共同构建一个高效、清洁、安全的能源供应网络,为全球的可持续发展贡献力量。

参考文献

[1]曹庆才,高伟,郭鹏,等.智慧风电系统架构与评价体系[J].分布式能源,2023,8(2):76-80.

[2]陈亮,阳熹,杨源.智慧海上风电场的定义、架构体系和建设路径[J].南方能源建设,2020,7(3):62-69.

[3]常丁懿,石娟,瞿丽莉,等.智慧风电场应急管理体系及应用研究:5G技术赋能[J].中国安全科学学报,2022,32(9):57-67

[4]卿子龙,王伟,刘剑欣.海上风电场换流站智慧型监控管理系统[J].分布式能源,2023,8(3):40-46.