顶拉管技术在城市地下管网建设中的应用

周庆磊 张 勇 中国一冶集团有限公司 湖北 武汉 430081

摘 要:随着城市化进程的加速,城市地下排水管网建设面临着越来越多的挑战。传统的明挖埋管施工工艺因其对交通和环境的影响较大,已难以满足现代城市排水管网建设的需求。顶拉管施工技术作为一种新型的非开挖施工技术,在城市地下排水管网建设中得到了广泛应用。本文旨在探讨顶拉管施工技术的原理、特点、施工工艺及其在城市地下排水管网建设中的应用效果。

关键词:城市地下排水管网;顶拉管施工技术;应用

引言

近年来随着城市化的不断发展,城市中的排水管道 也需要同步更新。传统的排水管网施工工艺主要有两种,明挖埋管和非开挖技术。明挖埋管施工工艺一般采 用拉森钢板桩或槽钢对管槽进行支护,挖掘机取土后敷 设管道。该工艺需对道路进行大面积封堵,造成交通压 力大,如遇到风化岩,钢板桩或槽钢支护施工困难,工 期将会延长,且在明挖施工中由于支护施工不规范容易 发生管槽坍塌事故,危险性较大。可见,传统的明开挖 在经济和效率上已经难以满足城市中管道建设的要求。

1 顶拉管技术概述

1.1 技术原理

先导式顶拉管施工工艺依托水平定向钻机、导向钻头、导向仪等核心设备,于管道起始端工作面,遵循预设的导向钻孔路径,运用水平定向钻进技术先行开凿先导孔,随后调整至设计管道的水平中心轴线。接着,沿此中心线,自管道一端的工作井深入钻至另一端的工作井。抵达目标工作井后,替换原有的导向钻头为直径不超过管道外径50毫米的反向掘进钻头,以执行反向扩孔作业。与此同时,于掘进钻头后方,装配自密封承插接口短管,并依次连接特制短钻杆、后顶板及锚环,形成反向承拉锚固系统。在反向掘进过程中,掘进头负责扩孔作业,并通过特制短钻杆传递回拉力,借助后顶板与锚环的协同作用,将自密封承插接口短管逆向拉顶入土层,从而实现管道的扩孔拉顶铺设。

1.2 技术特点

施工高效且精准定位: 先导式顶拉管施工法凭借定向钻机的精确导向, 能够沿预设路径一次性穿越多个井位, 相较于顶管、明挖及传统拖拉管施工, 显著缩短了工期, 减少了如钢板桩支护、道路修复、大面积沉井及管道多次连接等工序, 从而大幅度提高了施工效率与精度。

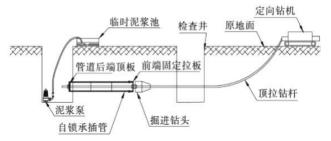
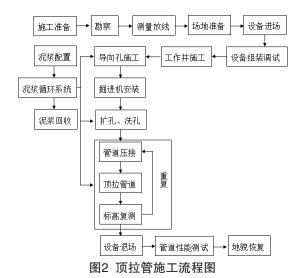


图1 先导式顶拉管工艺原理图

安全性增强,风险降低:在复杂地质条件如淤泥质 土、砂土中,传统施工法易导致流砂问题,增加施工风 险。而先导式顶拉管法通过减少沉井面积,避免了大面 积开挖,有效降低了流砂风险及施工中的安全隐患。

优质管道施工,防渗漏性能强:采用自锁双密封柔性管节,该工法即便在地基处理困难的情况下,也能通过柔性接头适应不均匀沉降,确保管道结构的完整性和密封性,有效防止渗漏,提升了管道施工质量。


顶进过程稳定顺畅:施工过程中,顶拉管法展现出了稳定的顶进性能,减少了纠偏操作的需求,并有效避免了卡钻问题,确保了施工的连续性和稳定性。

平行推进技术,保障管道寿命:通过回扩掘进拉顶施工的平行推进方式,该工法确保了管道在铺设过程中不受拉伸变形影响,实现了压力自平衡,从而延长了管道的使用寿命。

环境友好,施工条件优越:该工法维持了施工内外的压力平衡,不仅改善了施工环境,还有效解决了路面塌陷和管底标高控制不精准的问题,体现了其环境友好性和施工条件的优越性^[1]。

2 施工工艺流程

先导式顶拉管施工工艺主要包括五个核心步骤:前期筹备阶段、井位构建阶段、定向钻孔导向阶段、管道铺设阶段以及管道顶拉安装阶段。

3 顶拉管技术在城市地下管网建设中的应用要点

3.1 施工准备

在施工准备阶段,首要任务是组织专业人员深入研究施工图纸,掌握设计意图、技术要求及工程特点,并针对图纸中的疑问点进行记录与讨论,通过与设计、甲方及监理单位的会审,确保施工方案的一致性和可行性。同时,需编制详细的施工方案,明确各部门的职责与任务,为施工提供坚实的技术保障。此外,结合工程实际情况,制定周密的施工计划,并开展全面的技术安全交底及操作人员上岗培训,确保每位参与者都具备必要的技能与安全意识。对于进场的材料,需进行严格的质量检查与妥善防护。

3.2 勘察与场地准备

勘察工作是非开挖铺管工艺中不可或缺的一环,主要包括施工物探和管线交底。鉴于管道铺设的连续性要求,施工前必须全面、细致地进行施工区域的物探工作,并与相关单位沟通协调,确保地下管线的准确交底,避免施工过程中的意外障碍。场地准备方面,需根据现场平面图合理规划材料堆放区与施工机械进出路线,确保施工现场的水、电、道路畅通无阻,并对场地进行清理平整,为施工机械的平稳运行提供条件。

3.3 测量放线

测量放线是施工精度的关键保障。依据设计要求,准确测量并标记出管道的起点、终点、轴线、折点、高程及井口位置,同时定出管道开挖口的边线,并采用明显标识如白灰线,便于施工机械的精准作业。此外,还需特别注意附属构筑物及管线预留口的位置,设置可靠的栓桩与标志,确保其得到妥善保护^[2]。

3.4 工作井施工

工作井的施工采用沉井法,其内径的确定需依据定

向钻机的类型: 若采用坑式设备, 工作井内径应不小于3 米;若选用地面式设备,则内径至少需达到2米。在下沉 过程中, 应确保挖掘机的掘进作业均匀且对称, 以保证 井体的稳定下沉。施工采用不排水下沉方式,需确保井 内水位始终高于井外水位至少1米,以维持井内外压力平 衡。针对特定地质条件,还需采取适当的减摩措施,以 降低下沉过程中的阻力。当工作井紧邻周边建筑物或井 圈土质较差时,为确保井体及周边环境的安全,需采用 高压旋喷桩进行周边防护。若基底为淤泥、淤泥质土等 软弱土层,则需通过水泥搅拌桩或高压旋喷桩对地基进 行加固处理,以提高其承载力。在无周边防护桩的情况 下, 为防止管节在洞口处发生沉降, 影响整体管道的标 高和稳定性,需在洞口处增设洞口加固桩。沉井材料选 用C35混凝土, 抗渗标号达到P6, 以确保井体的结构强度 和抗渗性能。对于高压旋喷桩的注浆体, 其水泥用量应 不小于200kg/m, 强度不低于1.2MPa, 且水泥强度等级需 达到42.5,以保证注浆体的质量和稳定性。

3.5 导向孔施工

定向钻导向施工是先导式顶拉管工艺中的关键环节,其精确性直接关系到整个管道铺设的准确性和效率。在施工过程中,必须严格按照施工图纸和物探成果来规划管道轨迹,并确保定向钻杆能够准确地从起始井穿越沉井预留孔,直至到达结束井。为实现这一目标,可以采用两种导向方法: 坑内导向和地面造斜坡导向。坑内导向方法无需构建斜坡,而是直接在工作井内将钻杆水平送入预定平面,这种方法在标高控制方面具有极高的准确性。另一种方法是地面造斜坡导向,它通过将设备放置在地面上,利用导向钻头从地面钻孔并构造斜坡进入土层,当达到设计标高后,调整钻头方向进行水平钻进,直至抵达顶拉井位。这种方法不仅节省了地面空间,还加快了施工速度,但对标高控制的要求也相应提高。

3.6 泥浆配置

在顶拉管施工中,泥浆扮演着至关重要的角色,它不仅能够稳定孔壁、降低钻杆阻力,还能有效减小钻头与土体间的摩擦,并起到冷却钻具的作用。为确保施工的高效与安全性,必须根据不同的土层特性,精准配置泥浆,并添加相应的添加剂。特别是在穿越砂土层时,由于泥浆易流失,需要增加提粘剂以提高泥浆的粘度,确保其稳定携带钻屑至地表。而泥浆的后续处理同样重要,采用真空泥浆车进行抽吸,并将其运送至底泥厂进行专业处理,以确保施工环境的整洁与环保。在配置泥浆时,需严格把控其性能指标,以满足施工需求。具体而言,泥浆的粘度需足以维护孔壁稳定,并顺畅携带钻屑;失水量控制方面,

一般地层30分钟内的失水量应控制在10~15ml之间,而对于水敏性易坍塌和松散地层,失水量则需控制在5ml以下;此外,泥浆的PH值也需保持在8~10的适宜范围内。值得注意的是,在施工过程中,随着扩孔阶段的不同,需要灵活调整泥浆的压力和流量,以确保施工的顺利进行。

3.7 回扩掘进顶拉管道

在先导式顶拉管施工中, 顶拉铺管技术占据核心地 位。这一过程涵盖了管节的精密连接、钻杆与顶拉挡板 的稳固安装、牵引掘进以及管道的顶拉安装等多个关 键步骤。施工初始, 掘进机通过旋转接头与拉管头紧密 相连, 并顺利接上首节管道。以先前精心施工的导向孔 为准确基准, 掘进机在工作井井壁提供的坚实反力作用 下,利用千斤顶在工作井内高效完成管节的连接工作。随 后,管道内部钻杆得以延长,为后续的掘进作业做好充分 准备。管节安装就绪后,定向钻机启动牵引掘进程序,掘 进机沿导向孔精确轨迹前行,对土层进行有序破除。破除 过程中产生的渣土, 在泥浆的携运作用下, 顺利通过管 道被带入工作井内进行处理。这一过程中,管节的顶拉 与压接操作循环进行,直至整个铺管任务圆满完成。值 得一提的是,在管节压接之前,必须确保接头处得到彻 底清洗,这一步骤对于保障管道施工质量至关重要,任 何杂质或污垢都可能影响管道的密封性和整体性能。

3.8 CCTV管道检测

为确保施工完成的截污管道质量达标且内部无瑕疵,需采用CCTV闭路电视设备对管道进行全面细致的检查。这一检查过程不仅为竣工档案提供了宝贵的影像资料,更为管道的长期稳定运行奠定了坚实基础。在管道施工圆满结束后,专业的检测人员会操控CCTV检测机器人系统深入管道内部。机器人将从管道的一侧缓缓行进至另一侧,沿途对管道内部的每一个细节进行详尽的摄录与存储。特别对于经过修复后的管道缺陷位置,机器人会进行更为细致的拍摄,确保任何潜在问题都能被准确记录。完成管道内部的摄像工作后,要及时对收集到的数据进行全面处理与分析,并据此生成详尽的检测报告文件。这份报告不仅详细记录了管道的内部状况,更对存在的问题进行了明确标注与分类,为后续可能的维护与维修工作提供了极大的便利。

3.9 地貌恢复

在管道施工及工作井恢复工作全部完成后,还需特别关注施工过程中定向钻机对地层造成的破坏,并采取有效措施进行恢复。特别是对于造斜段钻孔以及管道与钻孔之间的环隙,必须进行细致的注浆恢复工作。为恢复地面的强度,通常采用高压旋喷注浆机,通过造斜

孔进行精准注浆。这一方法不仅能够有效填补地层中的空隙,还能增强地层的整体稳定性。而在管道与钻孔间环隙较大的情况下,则需在管道铺设完成后,进行额外的回填工作。具体来说,利用置换泥浆,这种由水泥、粉煤灰、石膏等凝胶材料组成的特殊泥浆,通过施加一定的压力,将其压入管道与土层之间的间隙中。这样一来,就能将原本存在于环隙中的触变泥浆置换出来,从而确保地层的完整性和稳定性。

4 应用案例及效果分析

中山市中心组团的黑臭(未达标)水体整治提升工 程(项目三)是一个综合性的治理项目,涵盖了截污、 调蓄、清淤、管道检测与修复、调水补水、岸线及生态 修复,以及水务信息化等多个方面。其中,截污管道工 程是该项目的重要组成部分, 涉及沙溪、大涌、南区及 五桂山四个镇区的58条河涌。这些河涌的截污管道工程 需穿越中山市的多条繁忙交通要道,如105国道、沙溪大 道、岐江公路、兴工路和工业大道等。由于这些道路两 侧紧邻建筑物和市政设施, 且车流量大, 若采用传统的 明开挖或顶管施工方法,将面临交通严重拥堵、施工用地 紧张、安全风险高、对周边环境造成不良影响以及可能破 坏原有设施等多重挑战。为有效应对上述问题,本项目创 新性地采用了顶拉管技术。这一技术的应用极大地缓解了 工作面不足的问题,显著降低了对原有设施的破坏程度, 减少了临时用地的占用,并加快了施工进度。同时,由于 顶拉管技术的高效性,还减少了所需机械设备的数量,进 一步降低了施工成本。具体来说,采用顶拉管技术共节约 成本7200万元,施工时间仅为12天,相比顶管施工的29天 和明开挖的18天大大缩短。同时,顶拉管技术对周围环境 影响小, 施工安全性高, 社会效益显著。因此, 顶拉管 技术在本项目中的成功应用, 为解决类似复杂环境下的 管道施工问题提供了宝贵的经验和借鉴。

结语

顶拉管技术作为一种新型的非开挖施工技术,在城市地下管网建设中具有广泛的应用前景。其施工速度快、精度高、安全可靠、施工质量好、适应性强等特点,使其在现代城市管网建设中具有重要的应用价值。 未来,随着技术的不断发展和完善,顶拉管技术将在城市地下管网建设中发挥更加重要的作用。

参考文献

[1]徐荣华,孟远.顶拉管施工技术的探讨[J].港口航道与近海工程,2024,61(02):123-126+132.

[2]林晓红,熊冠宇,王贯州.先导式顶拉管技术在给排水工程中的应用探讨[J].江西建材,2024,(01):250-252.