BIM技术在工程造价管理中的应用及效益分析

池自强

浙江诚信人才资源交流服务有限公司 浙江 杭州 310000

摘 要:BIM技术在工程造价管理中的应用,通过构建建筑信息模型,实现项目信息的集成、共享与协同。这一技术不仅提高工程造价管理的准确性和效率,还促进项目决策的科学性和合理性。通过BIM技术,项目团队能够实时监控成本支出,优化资源配置,降低项目成本。BIM技术还提升项目管理的整体效率和质量水平,为工程项目的成功实施提供有力保障。本文将对BIM技术在工程造价管理中的应用及其带来的效益进行深入分析。

关键词: BIM技术; 工程造价管理; BIM应用; 效益分析

1 BIM 技术的定义

BIM技术,即建筑信息模型(Building Information Modeling),在工程造价管理中扮演着至关重要的角色。 它是一种应用于工程设计、建造、管理的数据化工具, 通过将建筑项目的各种信息集成到一个数字化的高精度 模型中, 实现设计、施工和运营的全生命周期管理。在 工程造价管理中, BIM技术能够显著提升管理的效率和准 确性。它不仅仅是一个建模工具, 更是一个集成了多方 面信息的系统, 能够在项目的各个阶段提供支持和决策 依据。工程师和造价管理者可以利用BIM模型准确地制定 工程计划、时间表和成本,实时监控工程进度和成本, 及时发现和解决潜在的技术问题,从而有效防止内部或 外部的紧急情况发生。BIM技术还可以帮助工程造价管理 者更有效地优化材料采购计划和工程结构设计,准确评 估和分析每一个细部和结构,确定最佳的工程细节,严格 控制材料采购计划,以确保最佳的成本和质量。BIM技术 还可以进行碰撞检查,找出设计与施工流程中的空间碰 撞,在施工前就解决问题,减少设计变更带来的返工等 现象造成的成本浪费,缩短施工周期,提高工程质量。

2 BIM 技术在工程造价管理中的特点

2.1 可视化

BIM技术在工程造价管理中的一大特点是其强大的可视化功能。传统的工程造价管理往往依赖于二维图纸和文本描述,而BIM技术则通过三维模型将建筑项目的所有元素直观地呈现出来。这种可视化不仅限于设计阶段,还可以贯穿整个工程造价管理流程,使得造价管理者能够清晰地看到项目的每一个细节,从而更准确地评估成本、制定预算和进行成本控制[1]。可视化功能还提高了沟通效率,使得项目团队成员能够更容易地理解项目需求,减少误解和错误。

2.2 协调性

BIM技术的协调性是其在工程造价管理中的另一个显著特点。通过BIM模型,项目团队成员可以实时共享和更新信息,确保各方对项目的要求和期望保持一致。这种协调性有助于减少设计冲突、施工延误和成本超支等问题。BIM技术还可以进行碰撞检测和空间协调,提前发现并解决潜在的问题,从而避免后期修改和返工带来的额外成本。BIM技术还可以协调不同专业之间的合作,确保项目整体进度和质量的顺利推进。

2.3 模拟性

BIM技术的模拟性是其在工程造价管理中的又一重要特点。通过BIM模型,造价管理者可以模拟项目的不同阶段和场景,包括设计、施工、运营等。这种模拟不仅有助于更准确地评估成本,还可以预测项目的性能和效果。BIM技术还可以模拟项目的运营和维护阶段,帮助造价管理者制定更合理的维护计划和预算。这种模拟性使得造价管理者能够更好地掌握项目的整体情况,做出更明智的决策。

3 BIM 技术在工程造价管理中的应用

3.1 投资决策阶段

在工程造价管理的投资决策阶段,BIM技术起到了至 关重要的作用。BIM技术通过收集和分析大量的信息数 据,为投资决策提供了有价值的参考。这些数据涵盖了 项目的历史信息、市场价格、材料成本等多个方面。利 用BIM技术,投资估算人员可以轻松地获取这些数据,并 进行科学、全面的分析。这种数据分析能力大大提高投 资估算的准确性,减少因信息不足或分析不当而导致的 决策失误。BIM技术还能够利用数据库工具进行指标测 算,持续提升计算效率,通过对历史信息的持续更新和 实时分析,BIM技术能够确保投资环节的预算评估工作有 序完成。这种动态更新和实时分析的能力,使得投资决 策更加灵活和及时,能够更好地应对市场变化和项目需 求的变化。BIM技术还能够为投资决策提供可视化支持,通过构建三维模型,BIM技术可以直观地展示项目的整体结构和细节,帮助决策者更好地理解项目的特点和需求。这种可视化支持不仅提高了决策的准确性,还增强了决策者的信心和满意度。

3.2 设计阶段

在设计阶段, BIM技术同样发挥着不可或缺的作用。 首先, BIM技术具备信息整合与共享的特性, 能够确保设 计单位、施工单位和项目管理单位之间的顺畅沟通。通 过构建三维模型, BIM技术可以将项目的各项参数直观 地展示出来, 使得各方能够同时参与到具体的设计中。 这种协同设计的方式大大减少了设计冲突和误解,提高 了设计的整体效率和质量[2]。其次, BIM技术还能够进 行性能分析和碰撞检查,性能分析包括结构分析、能耗 分析、光照分析等多个方面,可以确保设计方案的科学 性和可行性。碰撞检查则通过整合不同专业的三维设计 模型,提前找出在空间上可能存在的设计冲突,并提供 解决方案。这种检查和优化的能力使得设计方案更加完 善,减少了后期修改和返工的可能性。另外,BIM技术还 能够基于模型自动更新二维图纸, 在设计过程中, 任何 对模型的实质性修改都会自动反映在二维图纸中, 大大 提高了设计效率和准确性。

3.3 招投标阶段

在招投标阶段, BIM技术的应用同样重要。这一阶段 的任务是确定中标单位,并签订施工合同。BIM技术能够 确保招投标过程的公正和高效。BIM技术可以帮助招标单 位更好地分析投标人的报价, 通过收集和存储投标者提 交的文件, BIM技术可以准确地分析报价内容, 包括价 格、材料、工作量、工程质量等。这种分析能力大大提 高了招标单位的选择能力,使得中标单位更加符合项目 的需求和预算。BIM技术还能够提高招标项目管理的效 率,通过数字化和自动化的方式,BIM技术可以帮助招标 单位更快地审核投标者的文件、跟踪招标进度, 并及时 补充报价情况。BIM技术还能够实现招标项目的可视化评 审,在方案设计评审环节,BIM技术可以将传统的二维展 示转变成三维展示, 快速呈现不同方案的特点和优势。 这种可视化评审方式增强评审的针对性和有效性,提高 整体设计方案的质量和专业性。对于投标人来说,BIM技 术同样具有重要意义,通过构建BIM标书,投标人可以直 观地展示施工方案和项目管理计划,提高中标的机会, BIM技术还可以帮助投标人进行资源优化和资金计划,制 定合理的投标策略。

3.4 施工阶段

在施工阶段,BIM技术的应用更是至关重要。BIM技术可以通过构建三维模型,实时监控施工进度和材料使用情况。这种监控能力使得项目管理人员能够及时发现和解决问题,确保施工按计划进行。BIM技术还可以提供详细的施工进度报告和材料消耗报告,为管理人员提供决策支持。BIM技术能够实现施工过程中的资源协调,通过整合各方资源,BIM技术可以确保资源的有效利用和合理分配。这种协调能力减少资源浪费和闲置现象,提高施工效率和质量。BIM技术还能够进行施工安全管理和质量控制,通过构建安全模型和质量检查模型,BIM技术可以预测和预防潜在的安全隐患和质量问题。这种预防性的管理方式大大降低了施工风险和成本,提高了项目的整体安全性和质量水平。对于施工人员来说,BIM技术也提供了极大的便利。通过构建三维模型,施工人员可以直观地了解施工任务和细节,提高施工效率和准确性。

3.5 竣工结算阶段

在竣工结算阶段, BIM技术的应用同样不可或缺。这 一阶段的任务是进行项目验收、结算和交付。BIM技术能 够确保竣工结算过程的准确、高效和透明。BIM技术可以 通过构建三维模型,对项目进行全方位的核查和检查, 这种核查能力使得验收团队能够快速定位并检查建筑中 的各个关键部位,确保建筑质量符合设计要求。BIM技术 还可以辅助进行建筑性能的检测与评估, 如能耗分析、 照明效果评估等,为建筑的投入使用提供科学依据。BIM 技术可以自动化生成竣工图纸和结算报告,通过数字化 和自动化的方式, BIM技术可以大大提高竣工图纸和结算 报告的编制效率,并确保其准确性。这种自动化能力减 少人工操作的繁琐和错误,提高了整体竣工结算的效率 和质量。BIM技术还可以实现项目成本的精确计算和分 析,通过构建三维模型,BIM技术可以准确地计算工程 量,并为结算提供可靠依据。BIM技术还可以辅助进行成 本分析,帮助项目团队发现成本控制中的潜在问题,并 提出改进建议。这种成本分析能力使得项目团队能够更 好地掌握项目的经济效益和成本风险[3]。在竣工资料的管 理和归档方面, BIM技术也提供了极大的便利。通过构建 一体化的竣工资料库, BIM技术可以将竣工图纸、施工记 录、质量检测报告等资料与三维模型进行绑定,使得资 料的查询和检索更加直观和方便。这种管理能力大大提 高竣工资料的完整性和可追溯性, 为项目的后期运维提 供有力的支持。

4 BIM 技术在工程造价管理中的效益分析

4.1 经济效益分析

BIM技术在工程造价管理中的经济效益分析,主要体

现在成本控制与资源优化方面。在项目初期, BIM技术通 过精确的成本估算,能够大幅度降低因信息不准确或沟 通不畅导致的成本超支风险。利用BIM模型,项目团队 可以详细分析每个建筑构件的成本构成,精确预测工程 量、材料消耗以及人工费用,从而制定出更为合理的成 本计划。这种精确的成本估算不仅有助于项目团队在预 算范围内完成项目建设,还能为项目决策提供有力的数 据支持。在施工过程中, BIM技术通过实时监控成本支 出,帮助项目团队及时调整成本控制策略,确保项目在 预算范围内顺利推进。BIM技术能够实时更新项目成本数 据, 使项目团队能够及时解成本变化情况, 并根据实际 情况采取相应的调整措施。这种实时的成本控制能力, 有助于项目团队实现成本的最小化,提高项目的经济效 益。BIM技术还能够实现资源的优化配置,避免资源浪费 和重复采购,通过BIM模型,项目团队可以清晰地了解每 个建筑构件所需的材料、设备以及人工资源,从而实现 资源的精确匹配和合理利用。

4.2 管理效益分析

BIM技术在工程造价管理中的管理效益分析,主要体 现在信息集成与共享、协同设计与管理以及决策支持方 面。BIM技术能够实现信息的集成与共享,打破传统工程 造价管理中的信息孤岛现象。通过构建BIM模型,项目团 队可以实时获取和更新项目信息,包括设计信息、施工 信息、成本信息等,确保各方对项目需求和期望的一致 性。这种信息的透明化和实时性有助于减少沟通障碍和 误解,提高项目管理的整体效率。BIM技术能够实现协同 设计与管理、促进项目团队之间的合作与协调、通过BIM 平台,不同专业的人员可以共同参与到项目的设计、施 工和管理中,实现信息的无缝对接和资源的优化配置。 这种协同管理的方式有助于缩短项目周期,提高项目管 理的整体质量和效率[4]。BIM技术还能够为项目决策提供 有力的支持,通过BIM模型,项目团队可以直观地了解项 目的整体情况和细节信息,为决策提供直观、准确的数 据支持。这种决策支持能力有助于项目团队做出更加科 学、合理的决策,提高项目的成功率和整体效益。

4.3 质量效益分析

BIM技术在工程造价管理中的质量效益分析,主要体现在质量控制、质量数据可视化分析以及质量管理的持续改进方面。BIM技术能够实现质量控制的精细化管理。通过构建BIM模型,项目团队可以对项目的各个细节进行精确的质量检查和评估。这种检查方式有助于发现潜在的质量问题,并及时采取措施进行修复和改进。BIM技术还能够实现质量问题的追踪和溯源,提高质量控制的准确性和效率。BIM技术能够实现质量数据的可视化分析,通过BIM平台,项目团队可以将质量数据以三维模型的形式呈现出来,使得质量问题的发现和解决更加直观和方便。BIM技术还能够实现质量管理的持续改进,通过收集和分析质量数据,项目团队可以不断总结经验教训,优化质量管理流程和方法。这种持续改进的能力有助于项目团队不断提高质量管理水平,提升项目的整体质量水平。

结束语

综上所述,BIM技术在工程造价管理中展现出强大的应用潜力和价值。通过精确的成本估算、实时的成本控制以及资源的优化配置,BIM技术为项目团队提供了有力的决策支持。随着技术的不断发展和完善,相信BIM技术在工程造价管理中的应用将会更加广泛和深入,为建筑行业的可持续发展贡献更多力量。

参考文献

- [1]赵石娆.标准化BIM技术在工程造价成本预算风险管理中的应用探讨[J].中国标准化,2022(24):229-231.
- [2]杜巍.基于精细化管理的建筑工程造价管理中BIM 技术的应用研究[J].中国建筑金属结构,2021(11):60-61.
- [3]王明岩,龚明苗,白楠,兰文斐,贺哲钢.BIM技术在工程造价管理中的实践研究[J].智能建筑与智慧城市,2022 (07):118-120.
- [4]刘泳奇,吴环宇,陈珂.智能建造技术在工程造价管理中的应用研究综述[J].建筑经济,2022,43(S1):245-252.