探讨道路桥梁道路施工要点

马晨耀

重庆北新融建建设工程有限公司 新疆 乌鲁木齐 830000

摘要:本文探讨了道路桥梁施工要点,阐述道路施工前期准备、路基与路面施工技术,涵盖勘察设计深化、材料设备管理等内容。分析桥梁基础、下部结构、上部结构及附属设施施工要点,介绍施工过程动态监测、安全风险防控与环境生态保护策略,为道路桥梁施工提供技术参考。

关键词: 道路施工: 桥梁施工: 动态监测: 安全风险防控: 生态保护

引言:道路桥梁作为交通基础设施的关键部分,其 施工质量直接关乎交通的顺畅与安全。在城市化进程加 快、交通需求不断增长的当下,道路桥梁建设任务日益 繁重。施工过程中,涉及诸多复杂环节与技术要点,从 前期规划到具体施工,再到后期管理,均需严谨把控。 本文围绕道路桥梁施工要点展开探讨,为相关工程提供 参考与借鉴,助力提升工程建设水平。

1 道路施工要点

1.1 施工前期准备

施工前期准备是道路施工的重要基础,涵盖勘察设 计深化、材料设备管理及施工组织设计等关键内容。勘 察设计深化直接影响施工方案的可行性与经济性。需 对地质水文条件展开深度复核,借助钻探、原位测试获 取地层结构、地下水位等数据,识别软弱夹层、流沙层 等不良地质。地形测绘要精确把握关键点位标高与坡 度,山区道路依地形调整线形,规避高填深挖;平原地 区着重排水设计, 防止路基受积水影响, 据此优化施工 方案。材料与设备管理是施工质量和效率的保障。严格 设定原材料性能标准,水泥明确强度等级、凝结时间, 沥青规定针入度、软化点等指标。材料进场执行多层验 收,核查质量文件、外观检查并抽样复检。机械设备选 型依据施工工艺与工程量,土方作业匹配挖掘机、装载 机, 压实作业按材料特性选用压路机, 确保设备适配施 工需求。施工组织设计发挥统筹全局作用。以关键线路 编制进度计划,细分工序时间与衔接,明确节点工期。 依据进度计划制定资源配置策略, 合理安排人力、材 料、设备投入, 高峰期加强储备与调配。建立动态调整 机制, 遇天气变化、设计变更等情况, 及时优化进度与 资源分配,确保施工顺利推进。

1.2 路基施工

地基处理决定路基稳定性。软土地基加固,换填法 清除软弱土层,换填强度高、透水性好的材料,分层压 实;排水固结法设砂井、塑料排水板,加速软土排水固 结,提升地基承载力。压实度控制贯穿始终,依土质、 压实机械特性确定压实遍数与工艺, 确保地基密实均 匀,为路基提供坚实基础[1]。填筑与压实是路基施工关 键。分层填筑厚度严格控制,不同土质与压实机械对应 不同标准,一般每层松铺厚度不超30厘米。压实机械选 型依据填料类型,细粒土选静压式压路机,粗粒土选振 动压路机。压实度检测采用灌砂法、环刀法等技术,依 规范频率抽检,确保每层压实度达标,增强路基整体强 度与稳定性。排水系统构建防止路基水损害。边沟沿道 路两侧设置, 依地形与排水量确定断面尺寸, 保证排水 顺畅;截水沟设于山坡路段上方,拦截坡面径流,避免 冲刷路基。盲沟用于排除地下水,填充透水性材料,依 地下水位与流向合理布局。排水设施施工注重防渗处 理,沟壁、沟底采用防渗材料或加固措施,防止水分渗 入路基,影响其性能。

1.3 路面施工

基层施工奠定路面承载基础。材料级配设计依交通荷载、气候条件确定,保证混合料强度与稳定性。摊铺工艺采用摊铺机作业,控制摊铺速度与厚度均匀性,避免离析。平整度控制通过摊铺机找平装置、压路机碾压工艺实现,施工中实时检测,及时调整,确保基层平整度符合要求,为面层施工创造良好条件。面层施工决定路面使用性能。沥青混凝土面层材料配比优化结合石料级配、沥青用量,保障高温稳定性与低温抗裂性。摊铺温度依沥青标号与环境温度控制,确保混合料摊铺压实效果;摊铺厚度通过高程控制桩与摊铺机传感器精准把控。混凝土面层注重配合比设计,控制水灰比、骨料粒径,振捣密实防止蜂窝麻面。接缝处理是关键,沥青面层接缝采用热接缝或平接缝技术,混凝土面层设胀缝、缩缝与施工缝,依规范施工,保证接缝平整、牢固。质量通病防治提升路面耐久性。裂缝成因包括温度变化、

材料收缩与荷载作用,预防措施从材料选择、施工工艺改进入手,控制沥青混合料温度,优化混凝土配合比,加强养护。车辙多因沥青高温稳定性不足,通过改进级配、添加抗车辙剂提升混合料性能。坑槽由局部破损发展而成,施工中避免混合料离析,加强成品保护,及时修补微小破损,防止病害扩大。

2 桥梁施工要点

2.1 基础施工

桩基施工需依地质条件与荷载要求选择成孔工艺。 钻孔灌注桩适用于多种地层,旋挖钻机成孔效率高,冲 击钻在岩石地层表现出色, 回转钻则能保证孔壁稳定 性。成孔后严格执行清孔标准,通过换浆法或抽浆法清 除孔底沉渣,确保沉渣厚度满足设计规范。钢筋笼制作 采用胎具成型保证精度,吊运过程设置支撑防止变形, 定位时依靠导向架与测量仪器,确保其中心与桩位偏差 控制在极小范围。在复杂地质区域,成孔过程需动态调 整钻进参数, 防止塌孔与缩径。承台与桥台施工中, 模 板支撑体系关乎结构尺寸精度与稳定性[2]。采用满堂支 架或型钢支撑,需依据混凝土浇筑荷载与侧压力进行力 学计算,设置足够的剪刀撑与斜撑增强整体稳定性。混 凝土浇筑采用分层连续推进方式,每层厚度控制在合理 范围,振捣时避免漏振与过振,确保混凝土密实。浇筑 完成后及时覆盖保湿材料,采用洒水养护或包裹塑料薄 膜, 高温天气增加养护频次, 低温环境采取保温措施, 防止混凝土因温度变化产生裂缝。

2.2 下部结构施工

桥墩施工对模板性能要求严苛。模板设计需进行强 度与刚度验算,采用钢模板或木模板时,确保面板平整 度与接缝严密性,通过拉杆与支撑系统保证混凝土浇筑 时不变形。混凝土浇筑分层进行,每层高度依据振捣设 备性能确定, 层间浇筑间隔控制在混凝土初凝前完成, 避免出现冷缝。为预防温度裂缝,严格控制水泥水化 热,选用低热水泥或添加矿物掺合料,高温季节对原材 料降温处理,浇筑后加强测温监控,及时采取通水冷却 或保温措施。对于超高桥墩, 需采用翻模或爬模工艺确 保施工安全与精度。桥台施工注重回填材料质量与压实 度控制。选用透水性好、强度高的材料,如砂砾、碎石 土等,分层回填厚度严格限制,每层摊铺后采用小型夯 实机械或振动压路机压实, 边角部位人工夯实。施工中 加强台后沉降监测,采用沉降板或位移计实时记录数 据,发现异常及时调整回填工艺或增设地基处理措施, 防止因台后沉降导致桥头跳车现象。

2.3 上部结构施工

预制构件施工需科学规划预制场布局。场地硬化处 理保证平整度与排水性,依构件类型设置生产线与存放 区,配置起重设备与运输通道。构件制作过程严格控制 钢筋绑扎精度、预埋件位置及混凝土配合比,采用振捣 棒与附着式振捣器组合振捣,保证混凝土密实度。运输 采用专用平板车,设置支撑与固定装置防止构件晃动, 吊装时精确计算吊点位置与起吊角度,保障运输吊装安 全。现浇施工中支架体系稳定性是关键。采用碗扣式、 盘扣式支架或贝雷梁支架,施工前进行详细的受力分析 与荷载试验,确保承载能力满足要求。混凝土浇筑遵循 对称、分层、连续原则,从跨中向两端或从两端向跨中 推进,避免支架不均匀受力。预应力张拉严格按照设计 顺序与控制应力进行,张拉前校验千斤顶与压力表,张 拉过程记录伸长量与应力值,确保预应力施加准确。悬 臂施工通过线形动态监控保证桥梁线形符合设计要求。 采用全站仪与水准仪进行高程与轴线测量,每节段施工 后及时分析偏差数据,调整模板标高与预拱度[3]。合龙段 选择低温时段施工,采取临时锁定措施,浇筑前对梁体 进行配重,补偿混凝土重量。顶推施工中严格控制顶推 速度与同步性,设置导向装置防止梁体偏移,结构体系 转换时按设计顺序拆除临时设施, 完成体系转换。

2.4 附属设施施工

伸缩缝与支座安装精度直接影响桥梁使用寿命。伸 缩缝安装前清理槽口,调整预埋钢筋位置,安装时严格 控制缝宽与标高,保证与两侧路面平顺衔接。橡胶支 座安装前检查其规格型号与外观质量,采用环氧树脂砂 浆或高强无收缩灌浆料进行垫石处理, 确保支座顶面水 平、受力均匀,定期检查橡胶老化情况并及时更换。伸 缩缝安装完成后进行功能调试,检查伸缩性能与密封效 果。桥面铺装先进行防水层施工,采用喷涂防水涂料或 铺设防水卷材,保证防水层与基层粘结牢固、无空鼓。 铺装层施工采用摊铺机或整平机控制平整度,振捣采用 振捣梁或插入式振捣棒, 提浆后进行抹面与拉毛处理, 增强表面抗滑性能。施工中设置高程控制桩与横坡控制 装置,确保铺装层厚度与坡度符合设计要求。防护设施 施工保障行车安全。栏杆与防撞墙钢筋绑扎牢固, 模板 安装保证线形顺直,混凝土浇筑振捣密实,拆模后及时 养护防止表面裂纹。防眩板依道路线形与照明条件合理 布局, 保证遮光效果同时不影响行车视野。照明设施安 装前进行线路敷设与灯具基础施工, 灯具安装高度与角 度符合设计,调试时保证照明亮度与均匀度达标。

3 道路桥梁施工中的关键技术控制与协同管理

3.1 施工过程的动态监测与实时调控体系

施工过程需构建多维动态监测体系。道路路基施工中,通过埋设沉降板监测地基竖向变形,沿路基纵向每50米设置监测断面,及时掌握软土地基固结情况。桥梁桩基施工采用声波透射法检测桩身完整性,在混凝土浇筑后固定时间内完成检测,发现缺陷立即制定补强方案。路面摊铺阶段,利用红外热像仪监测沥青混合料摊铺温度场,确保温度均匀性,对温度异常区域及时调整摊铺工艺。实时调控依据监测数据展开。路基压实度未达标准时,分析土质含水量、压实机械参数,调整碾压遍数或换用大功率设备。桥梁悬臂浇筑施工中,若监测到梁体线形偏差超阈值,通过调整挂篮预拱度、优化混凝土浇筑顺序纠正。施工进度滞后时,重新梳理关键线路,增加设备与人力投入,将非关键工序适当后延,确保整体工期可控。引入BIM技术建立施工模型,模拟施工过程,提前预判潜在问题并优化施工方案。

3.2 施工安全风险防控与应急响应机制

安全风险防控覆盖全施工周期。深基坑作业设置多 重防护, 坑顶周边1米范围设置防护栏杆, 栏杆高度不低 于1.2米,底部设置挡脚板。高空作业平台满铺脚手板, 四周安装防护网,作业人员强制佩戴五点式安全带。临 时用电系统实行三级配电、两级保护, 配电箱安装漏电 保护装置,定期检查线路绝缘性能。应急响应机制确保 风险可控。针对桥梁桩基塌孔、道路边坡坍塌等风险, 储备沙袋、钢板桩等应急物资,在施工现场设置应急通 道[4]。制定专项应急预案,明确各岗位应急职责,定期组 织消防、防坍塌等演练。发生突发事件时,立即启动预 案,疏散人员至安全区域,专业人员评估现场后采取支 护、抢险等措施, 防止事故扩大。建立安全风险预警系 统,通过传感器实时采集数据,对高风险作业进行提前 预警。同时, 在施工现场设置明显的安全警示标识, 夜 间配备充足照明,对特种作业人员进行专项安全培训, 确保其熟练掌握操作规程与应急处置方法。

3.3 施工环境协调与生态保护策略

施工环境协调注重多方平衡。与周边居民、企业沟通施工计划,合理安排噪音较大的混凝土浇筑、机械作

业时间,避开居民休息时段。跨河道桥梁施工前,与 水利部门协调,制定导流方案,保障河道行洪能力不受 影响。道路施工涉及既有交通时,设置临时交通引导标 识,安排专人疏导交通,减少施工对社会车辆通行的干 扰。生态保护贯穿施工全程。道路土方开挖产生的弃土 集中堆放于指定弃土场, 弃土场四周设置挡土墙与排水 沟,顶部覆盖防尘网。桥梁钻孔桩施工产生的泥浆经沉 淀池三级沉淀处理, 达标后排放, 严禁直接排入水体。 施工结束后,对临时占地进行植被恢复,选择本土草种 与灌木进行绿化,恢复生态原貌,减少工程建设对环境 的长期影响。同时采用环保型施工材料,推广新能源施 工设备,降低施工能耗与污染物排放。在山区施工时, 注重保护山体稳定性,避免因开挖造成滑坡、泥石流等 地质灾害;在穿越生态敏感区时,采取增设生态廊道等 措施,保障野生动物迁徙通道畅通。施工过程中加强对 地下水环境的保护,通过设置防渗帷幕等措施防止施工 污染地下水;对施工区域的土壤进行分类保护和修复, 避免土壤肥力下降和污染扩散。

结束语

道路桥梁施工要点涵盖多个关键环节,从施工前期准备到各结构施工,再到附属设施安装,每一环节都紧密相连,关乎工程整体质量与安全。施工过程中的动态监测、安全风险防控以及环境协调也不容忽视。只有全面把握这些要点,加强施工管理,才能打造出高质量的道路桥梁工程,为交通事业的发展提供坚实支撑,推动交通网络不断完善。

参考文献

- [1]刘永智.道路与桥梁施工建设管理的技术要点分析 [J].有色金属设计,2023,50(02):64-67.
- [2]黄夏玲.市政道路桥梁施工要点及现场管理方法探究[J].城市建设理论研究(电子版),2023(13):119-121.
- [3]侯新琼.道路与桥梁施工建设管理的技术要点研究 [J].建材发展导向,2024,22(16):121-123.
- [4]徐波,孙学武,纪滨玲.道路与桥梁施工建设管理的技术要点探析[J].中华建设,2024,(06):47-49.