建筑电气与智能化建筑发展

陈俊晖

温州国际会议展览中心有限公司 浙江 温州 325000

摘 要:在科技日新月异的当下,建筑领域正经历着深刻变革,建筑电气与智能化成为推动行业发展的关键力量。本文聚焦建筑电气与智能化建筑发展。阐述了其内涵,明确建筑电气范畴及智能化建筑特征。指出当前发展面临技术标准不统一、建设成本高、人才短缺、信息安全风险等问题。提出通过加强政策支持与标准制定、推动技术创新与融合、强化人才培养与引进、提升信息安全防护能力等策略,以促进建筑电气与智能化建筑克服阻碍,实现持续健康发展,为建筑行业现代化转型提供有力支撑。

关键词:建筑电气;智能化建筑;发展

引言:在科技迅猛发展的当下,建筑领域正经历深刻变革。建筑电气与智能化建筑作为传统建筑与现代科技融合的结晶,正逐步成为行业发展新潮流。建筑电气为建筑运作提供基础保障,智能化技术则赋予建筑更高自动化、信息化水平。然而,其发展并非一帆风顺,面临着诸多挑战。深入探究建筑电气与智能化建筑的发展路径,对建筑行业转型升级、满足人们对高品质建筑需求具有深远意义,本文将围绕此展开详细探讨。

1 建筑电气与智能化建筑的内涵

1.1 建筑电气的范畴

建筑电气涵盖了多个方面,包括供配电系统、照明系统、防雷接地系统、电气设备控制系统等。供配电系统负责为建筑提供稳定可靠的电力,确保各类电气设备正常运行。照明系统不仅要满足建筑的采光需求,还需考虑节能、舒适等因素,如采用智能照明控制系统,可根据不同场景和时间自动调节照明亮度。防雷接地系统则保障了建筑及内部设备免受雷击损害,确保人员和设备安全。电气设备控制系统实现了对电梯、空调、通风等设备的自动化控制,提高设备运行效率和管理水平。

1.2 智能化建筑的特征

智能化建筑通过集成多种先进技术,具备了感知、传输、处理和决策的能力。首先,智能化建筑拥有完善的传感器网络,能够实时感知建筑内外部环境参数,如温度、湿度、光照、空气质量等,以及设备的运行状态。其次,借助高速通信网络,将采集到的信息快速传输至中央控制系统。中央控制系统运用先进的数据分析和处理技术,对信息进行分析和判断,并根据预设的规则和策略做出决策,实现对建筑设备的智能控制。例如,根据室内外温度自动调节空调系统的运行模式,达到节能舒适的效果;通过安防传感器实现对建筑安全的

实时监控,一旦发现异常立即报警。智能化建筑还注重 用户体验,为用户提供便捷的交互界面,用户可通过手 机、平板电脑等终端设备远程控制建筑内的设备,实现 个性化的生活和工作环境设置[1]。

2 建筑电气与智能化建筑发展面临的问题

2.1 技术标准不统一

建筑电气与智能化领域技术发展迅猛,可技术标准却未能及时跟上脚步。当前,行业内各类标准繁杂,不同厂商依据自身理解与利益制定技术规范,导致产品与系统间接口、通信协议等各不相同。比如,智能照明系统中,有的品牌采用 ZigBee 协议,有的用蓝牙 Mesh,还有的用 KNX 总线,当需构建统一照明管理体系时,这些不同协议的设备就难以协同工作,系统集成难度大增。而在安防监控系统里,各厂家摄像头、存储设备和控制软件的兼容性也常出问题,致使监控数据无法流畅传输与整合,影响整体安防效果。这不仅让用户在设备选型与系统搭建时困惑不已,还阻碍了新技术推广,提高了项目建设与维护成本,严重制约了行业整体高效发展。

2.2 建设成本较高

踏入建筑电气与智能化建设领域,高额成本便成为一道难以跨越的门槛。从设备采购来看,智能化设备普遍价格不菲,像高精度温湿度传感器、智能门禁识别终端、智能楼宇控制系统核心设备等,相较传统设备成本高出数倍。以一座中型写字楼为例,单是引入智能照明、智能空调控制系统,设备采购成本就可能增加数百万元。且系统集成环节同样开销巨大,需专业技术团队将不同设备、软件有机整合,人工成本、调试费用叠加,让项目预算不断攀升。不仅如此,后续维护成本也不容小觑,由于技术更新快,每隔几年就需对系统升级,更换老化设备、更新软件版本,这无疑加重了运营

方负担。如此高昂的建设与运营成本,使得许多资金有限的项目对智能化望而却步,限制了行业普及推广。

2.3 人才短缺

建筑电气与智能化是融合多学科知识的新兴领域,对人才素质要求极高。可现实是,这类复合型人才极度 匮乏。高校教育体系中,相关专业课程设置存在缺陷, 重理论轻实践,课程内容与实际行业需求脱节。学生在 校虽掌握了电气原理、建筑知识,但对新兴的物联网、大数据在建筑领域的应用实践不足,毕业后难以迅速适应岗位。在职人员方面,行业内培训体系不完善,企业 对员工知识更新不够重视,致使许多经验丰富的电气工程师、建筑设计师,面对智能化浪潮下的新技术、新方法,力不从心。在项目实施时,既懂建筑设计又能驾驭 智能化系统调试的人才稀缺,导致项目进度延误、质量打折,企业创新与发展也因人才瓶颈而受限,阻碍行业前行步伐。

2.4 信息安全风险

在智能化浪潮下,建筑电气与智能化系统信息安全风险如影随形。一方面,系统中存储着海量用户信息,像智能住宅中居民身份、家庭住址、生活习惯数据,商业建筑里企业机密、客户资料等,一旦遭遇黑客攻击,这些信息泄露,将给用户和企业带来难以估量的损失,如个人隐私曝光、企业商业机密被盗,造成经济与声誉双重打击。另一方面,智能化系统与外部网络紧密相连,智能设备漏洞成为安全隐患。部分智能家电、安防摄像头因设计缺陷,易被黑客入侵,控制设备运行,甚至让整个建筑电气系统瘫痪。并且,随着 5G 等技术普及,网络攻击渠道增多、速度加快,传统安全防护手段难以应对,信息安全形势愈发严峻,威胁着建筑电气与智能化系统稳定运行及用户权益[2]。

3 建筑电气与智能化建筑发展策略

3.1 加强政策支持与标准制定

政策扶持对建筑电气与智能化建筑发展至关重要。 政府应出台专项政策,鼓励企业投身技术研发与项目实 践。如设立专项资金,对研发先进智能建筑电气技术的 企业给予资金补助,对采用新技术的示范项目给予税收 优惠,降低企业创新成本,激发企业积极性。可参考山 东培育智能建造骨干企业的做法,各地政府制定智能建 筑企业培育计划,从资金、土地、人才等多方面给予倾 斜,助力企业做大做强。统一技术标准是行业有序发展 的基石。当前,住建部已发布《建筑电气与智能化通用 规范》,但行业内仍存在标准不统一问题。相关部门需 进一步细化标准,明确各设备接口、通信协议,像制定 智能照明、安防等系统统一标准,确保不同品牌设备能互联互通。鼓励企业、高校、科研机构参与标准制定,依据市场与技术发展及时更新,增强标准科学性与实用性。通过标准引领,减少系统集成阻碍,提升项目建设质量与效率,推动建筑电气与智能化建筑市场规范化,为行业长远发展筑牢根基。

3.2 推动技术创新与融合

技术创新是建筑电气与智能化建筑发展的核心驱动 力。企业与科研机构应加大研发投入,积极探索前沿技 术在建筑领域的应用。在智能配电方面, 研发具备故障 预测与自愈功能的智能配电柜,通过实时监测电流、电 压等参数,运用大数据分析与人工智能算法,提前预判 故障风险并自动修复,保障电力供应稳定。例如,ABB 公司推出的智能配电系统,可实现对配电设备的远程监 控与智能管理, 大幅提升供电可靠性与运维效率。融合 是建筑电气与智能化发展的关键路径。一方面,促进建 筑电气各子系统融合, 打破供配电、照明、安防等系统 间的壁垒,实现数据共享与协同工作。如某智能建筑项 目,将照明与安防系统集成,当安防系统检测到异常情 况时,自动调节照明亮度,为安保人员提供清晰视野, 提升应急响应能力。另一方面,推动智能化技术与建筑 电气深度融合。借助物联网技术,实现建筑设备的互联 互通,用户能通过手机 APP 远程控制家电、照明等设 备;引入云计算技术,为建筑智能化系统提供强大的数 据存储与运算能力,支撑复杂的数据分析与智能决策, 如基于云计算的能源管理平台,可根据建筑能耗数据优 化能源分配,降低能耗[3]。

3.3 强化人才培养与引进

人才是推动建筑电气与智能化建筑发展的核心要素。在人才培养方面,高校应优化专业设置,紧密贴合行业实际需求。例如,增加物联网、大数据分析、人工智能应用等前沿课程,让学生深入掌握智能建筑控制系统、智能安防技术等实操技能。还可与企业联合开展实践教学,建立实习基地,使学生能参与真实项目,积累实战经验,如某高校与本地知名建筑企业合作,让学生全程参与智能建筑项目从设计到施工的全流程,毕业后能迅速适应岗位。对于在职人员,行业协会与企业应定期组织培训。邀请行业专家解读最新技术标准与政策法规,分享前沿技术应用案例,组织新技术实操培训,如针对智能建筑能源管理系统升级开展专项培训,助力从业者知识更新。人才引进同样关键。企业可制定优厚政策,吸引高端人才。比如,为掌握先进智能建筑技术的海归人才提供住房补贴、科研启动资金,解决其子女人

学等生活难题,使其安心工作。同时,积极参与行业人才招聘会,与高校就业部门合作,精准招揽优秀毕业生。此外,通过技术合作、项目外包等方式,柔性引进外部专家,为企业提供技术指导,提升企业技术实力,推动建筑电气与智能化建筑领域人才队伍不断壮大。

3.4 提升信息安全防护能力

在建筑电气与智能化建筑蓬勃发展的当下,提升信 息安全防护能力刻不容缓。智能化系统集成了大量设备 与用户数据,一旦信息安全出现漏洞,后果不堪设想。 从技术层面,要构建多层级网络安全防护体系。部署专 业的网络防火墙,阻挡外部非法网络访问,防止黑客人 侵。同时,运用入侵检测与防御系统,实时监测网络流 量,及时发现并阻止异常攻击行为。定期更新建筑智能 化系统软件及相关设备固件,修复已知安全漏洞,降低 被恶意利用的风险。管理上,制定严格且细致的信息安 全管理制度。明确各部门、各岗位在信息处理流程中的 职责与权限, 杜绝越权操作。实行数据分级管理, 对不 同敏感程度的数据采取不同级别的防护措施。建立定期 的信息安全审计机制,对系统操作日志进行审查,及时 发现潜在安全隐患。人员培训同样重要。组织针对建筑 电气与智能化系统运维人员的信息安全培训, 提升其安 全意识, 使其熟悉常见信息安全威胁, 如网络钓鱼、恶 意软件传播等,并掌握有效的防范方法。开展应急演 练,模拟信息安全事故场景,让工作人员在实践中提升 应急响应与处理能力,确保在面对突发安全事件时能迅 速、有效地应对,全方位保障建筑电气与智能化建筑的 信息安全。

3.5 深化行业合作与市场拓展

加强行业内企业间的合作,是推动建筑电气与智能 化建筑发展的重要策略。建筑电气设备制造商、智能化 系统集成商、建筑设计单位、施工企业等应建立紧密的 合作联盟。通过联合研发项目,整合各方资源与技术优 势,攻克行业共性难题。例如,在智能建筑能源管理系 统研发中,电气设备制造商提供高效节能的设备,系统 集成商负责搭建统一的数据平台,建筑设计单位从建筑 整体布局与功能需求出发,提供优化建议,共同打造出 更完善、高效的能源管理解决方案。同时,行业协会应 发挥积极作用,组织各类交流活动,如技术研讨会、项 目对接会等,促进企业间的信息共享与经验交流。鼓励 企业参与国际合作,引进国外先进技术与管理经验,提 升我国建筑电气与智能化建筑行业的整体水平。在市场 拓展方面,企业应积极挖掘新兴市场需求。随着乡村振 兴战略的推进,农村地区对智能化基础设施建设的需求 逐渐显现,如智能电网改造、农村智能安防系统建设 等。企业可针对农村市场特点,研发适配的产品与解决 方案,开拓农村建筑电气与智能化市场[4]。

结束语

建筑电气与智能化建筑的发展,为现代生活带来了诸多便利与创新。而在这一进程中,信息安全防护能力的提升扮演着基石性的角色。通过技术上构建多层防护体系、管理上完善制度流程以及人员培训强化安全意识,我们为智能化建筑的稳定运行筑牢了防线。展望未来,随着科技的不断进步,建筑电气与智能化建筑将持续革新,而信息安全防护也将不断演进,以应对新挑战,助力建筑领域迈向更安全、高效、智能的新高度,为人们创造更优质的建筑环境。

参考文献

- [1]孙黎.建筑电气与智能化建筑发展[J].装备维修技术,2023(02):267-278
- [2] 姬膨.建筑电气与智能化建筑发展[J].建材与装饰,2022(32):116-127.
- [3]林志明.建筑电气与智能化建筑发展[J].通讯世界.2023,25(12):274-275.
- [4]孙锐.建筑电气与智能化建筑发展[J].智能建筑与智慧城市,2022(01):125-127.