Gut Microbiota: The Servant of Human Being and the Accessary of Tumorigenesis

Pan Gu ( Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China. )

Di Li ( The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China. )

Gang Xu ( The Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China. )

Yingnan Sun ( Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China. )

Minghua Wu ( Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China. )

https://doi.org/10.37155/2717-5278-0301-5

Abstract

Gut microbiome affects multiple facets of human health and is inextricably linked to tumorigenesis. Substantial research has aimed to understand how gut microbiome functions in the homeostasis of our body. This review explores the evidence demonstrating how the gut microbiome may affect body health, thereby having an impact on metabolism, protection, nutrition and some anatomical-functional relationship. Alterations in gut microbiota composition have been associated with plenty disorders. Of interest, majority of researches demonstrate the role of microbiota in cancer. However, they haven’t been classified systematically. We divided them into tumor in situ, gut-biliary tract cancer axis, gut-breast cancer axis, gut-haematopoiesis cancer axis and gut-brain cancer axis. In addition, we introduce the latest method in diagnosis and treatment of related cancer.

Keywords

Gut microbiome; Function; Cancer; Axis; Diagnosis; Treatment

Full Text

PDF

References

Jorth, P. et al. Metatranscriptomics of the human oral microbiome during health and disease. mBio 5, e01012-01014, doi:10.1128/mBio.01012-14 (2014).
[2]. Villanueva-Millán, M. J., Pérez-Matute, P. & Oteo, J. A. Gut microbiota: a key player in health and disease. A review focused on obesity. J Physiol Biochem 71, 509-525, doi:10.1007/s13105-015-0390-3 (2015).
[3]. Tandon, D. et al. A prospective randomized, double-blind, placebo-controlled, dose-response relationship study to investigate efficacy of fructo-oligosaccharides (FOS) on human gut microflora. Scientific reports 9, 5473-5473, doi:10.1038/s41598-019-41837-3 (2019).
[4]. Davenport, E. R. et al. The human microbiome in evolution. BMC Biol 15, 127-127, doi:10.1186/s12915-017-0454-7 (2017).
[5]. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646-674, doi:10.1016/j.cell.2011.02.013 (2011).
[6]. Talib, W. H. Melatonin and Cancer Hallmarks. Molecules (Basel, Switzerland) 23, doi:10.3390/molecules23030518 (2018).
[7]. Consortium, H. M. P. Structure, function and diversity of the healthy human microbiome. Nature 486, 207-214, doi:10.1038/nature11234 (2012).
[8]. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59-65, doi:10.1038/nature08821 (2010).
[9]. Venkatesh, M. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41, 296-310, doi:10.1016/j.immuni.2014.06.014 (2014).
[10]. Sartor, R. B. Microbial influences in inflammatory bowel diseases. Gastroenterology 134, 577-594, doi:10.1053/j.gastro.2007.11.059 (2008).
[11]. Zaibi, M. S. et al. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS letters 584, 2381-2386, doi:10.1016/j.febslet.2010.04.027 (2010).
[12]. Shen, J., Obin, M. S. & Zhao, L. The gut microbiota, obesity and insulin resistance. Molecular aspects of medicine 34, 39-58, doi:10.1016/j.mam.2012.11.001 (2013).
[13]. Samuel, B. S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the United States of America 105, 16767-16772, doi:10.1073/pnas.0808567105 (2008).
[14]. Magwira, C. A. et al. Diversity of faecal oxalate-degrading bacteria in black and white South African study groups: insights into understanding the rarity of urolithiasis in the black group. Journal of applied microbiology 113, 418-428, doi:10.1111/j.1365-2672.2012.05346.x (2012).
[15]. Silk, D. B., Grimble, G. K. & Rees, R. G. Protein digestion and amino acid and peptide absorption. The Proceedings of the Nutrition Society 44, 63-72 (1985).
[16]. Neis, E. P., Dejong, C. H. & Rensen, S. S. The role of microbial amino acid metabolism in host metabolism. Nutrients 7, 2930-2946, doi:10.3390/nu7042930 (2015).
[17]. Thomas, C. M. et al. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PloS one 7, e31951, doi:10.1371/journal.pone.0031951 (2012).
[18]. De Biase, D. & Pennacchietti, E. Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Molecular microbiology 86, 770-786, doi:10.1111/mmi.12020 (2012).
[19]. Tatullo, M. et al. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process. Scientific reports 6, 36042, doi:10.1038/srep36042 (2016).
[20]. Wang, D. et al. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer's disease beta-amyloid oligomerization. Molecular nutrition & food research 59, 1025-1040, doi:10.1002/mnfr.201400544 (2015).
[21]. Duenas, M. et al. A survey of modulation of gut microbiota by dietary polyphenols. BioMed research international 2015, 850902, doi:10.1155/2015/850902 (2015).
[22]. Ozdal, T. et al. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients 8, 78, doi:10.3390/nu8020078 (2016).
[23]. Goto, Y. et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science (New York, N.Y.) 345, 1254009, doi:10.1126/science.1254009 (2014).
[24]. Winston, J. A. & Theriot, C. M. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe 41, 44-50, doi:10.1016/j.anaerobe.2016.05.003 (2016).
[25]. Russo, R. et al. Gut-brain Axis: Role of Lipids in the Regulation of Inflammation, Pain and CNS Diseases. Current medicinal chemistry 25, 3930-3952, doi:10.2174/0929867324666170216113756 (2018).
[26]. Bieberich, E. It's a lipid's world: bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochemical research 37, 1208-1229, doi:10.1007/s11064-011-0698-5 (2012).
[27]. Hooper, L. V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science (New York, N.Y.) 291, 881-884, doi:10.1126/science.291.5505.881 (2001).
[28]. Costantini, L., Molinari, R., Farinon, B. & Merendino, N. Impact of Omega-3 Fatty Acids on the Gut Microbiota. International journal of molecular sciences 18, doi:10.3390/ijms18122645 (2017).
[29]. Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science (New York, N.Y.) 330, 831-835, doi:10.1126/science.1191175 (2010).
[30]. Kamada, N., Chen, G. Y., Inohara, N. & Nunez, G. Control of pathogens and pathobionts by the gut microbiota. Nature immunology 14, 685-690, doi:10.1038/ni.2608 (2013).
[31]. Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535, 65-74, doi:10.1038/nature18847 (2016).
[32]. Purchiaroni, F. et al. The role of intestinal microbiota and the immune system. European review for medical and pharmacological sciences 17, 323-333 (2013).
[33]. Balmer, M. L. et al. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. Journal of immunology (Baltimore, Md. : 1950) 193, 5273-5283, doi:10.4049/jimmunol.1400762 (2014).
[34]. Khosravi, A. et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell host & microbe 15, 374-381, doi:10.1016/j.chom.2014.02.006 (2014).
[35]. Bain, C. C. et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nature immunology 15, 929-937, doi:10.1038/ni.2967 (2014).
[36]. Sawa, S. et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nature immunology 12, 320-326, doi:10.1038/ni.2002 (2011).
[37]. Kruglov, A. A. et al. Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis. Science (New York, N.Y.) 342, 1243-1246, doi:10.1126/science.1243364 (2013).
[38]. Kelly, C. J. et al. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell host & microbe 17, 662-671, doi:10.1016/j.chom.2015.03.005 (2015).
[39]. Guilloteau, P. et al. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutrition research reviews 23, 366-384, doi:10.1017/s0954422410000247 (2010).
[40]. Paolella, G. et al. Gut-liver axis and probiotics: their role in non-alcoholic fatty liver disease. World journal of gastroenterology 20, 15518-15531, doi:10.3748/wjg.v20.i42.15518 (2014).
[41]. Woting, A. & Blaut, M. The Intestinal Microbiota in Metabolic Disease. Nutrients 8, 202, doi:10.3390/nu8040202 (2016).
[42]. Cummings, J. H. & Macfarlane, G. T. The control and consequences of bacterial fermentation in the human colon. The Journal of applied bacteriology 70, 443-459 (1991).
[43]. Kimura, I. et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proceedings of the National Academy of Sciences of the United States of America 108, 8030-8035, doi:10.1073/pnas.1016088108 (2011).
[44]. Gasperotti, M. et al. Fate of microbial metabolites of dietary polyphenols in rats: is the brain their target destination? ACS chemical neuroscience 6, 1341-1352, doi:10.1021/acschemneuro.5b00051 (2015).
[45]. Szwajgier, D., Borowiec, K. & Pustelniak, K. The Neuroprotective Effects of Phenolic Acids: Molecular Mechanism of Action. Nutrients 9, doi:10.3390/nu9050477 (2017).
[46]. Gerard, P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens (Basel, Switzerland) 3, 14-24, doi:10.3390/pathogens3010014 (2013).
[47]. Dai, Z. L. et al. L-Glutamine regulates amino acid utilization by intestinal bacteria. Amino acids 45, 501-512, doi:10.1007/s00726-012-1264-4 (2013).
[48]. Dai, Z. L., Wu, G. & Zhu, W. Y. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Frontiers in bioscience (Landmark edition) 16, 1768-1786 (2011).
[49]. Rhee, S. H., Pothoulakis, C. & Mayer, E. A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nature reviews. Gastroenterology & hepatology 6, 306-314, doi:10.1038/nrgastro.2009.35 (2009).
[50]. Lyte, M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS pathogens 9, e1003726, doi:10.1371/journal.ppat.1003726 (2013).
[51]. Wang, B. et al. Luminal administration ex vivo of a live Lactobacillus species moderates mouse jejunal motility within minutes. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 24, 4078-4088, doi:10.1096/fj.09-153841 (2010).
[52]. Matsumoto, M. et al. Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study. Frontiers in systems neuroscience 7, 9, doi:10.3389/fnsys.2013.00009 (2013).
[53]. Lee, C. Y. & Abizaid, A. The gut-brain-axis as a target to treat stress-induced obesity. Frontiers in endocrinology 5, 117, doi:10.3389/fendo.2014.00117 (2014).
[54]. Marchesi, J. R. et al. The gut microbiota and host health: a new clinical frontier. Gut 65, 330-339, doi:10.1136/gutjnl-2015-309990 (2016).
[55]. Sender, R., Fuchs, S. & Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS biology 14, e1002533, doi:10.1371/journal.pbio.1002533 (2016).
[56]. Arnold, M. et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut 66, 683-691, doi:10.1136/gutjnl-2015-310912 (2017).
[57]. Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America 108 Suppl 1, 4586-4591, doi:10.1073/pnas.1000097107 (2011).
[58]. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178-184, doi:10.1038/nature11319 (2012).
[59]. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559-563, doi:10.1038/nature12820 (2014).
[60]. Polk, D. B. & Peek, R. M., Jr. Helicobacter pylori: gastric cancer and beyond. Nature reviews. Cancer 10, 403-414, doi:10.1038/nrc2857 (2010).
[61]. Crosbie, E. J., Einstein, M. H., Franceschi, S. & Kitchener, H. C. Human papillomavirus and cervical cancer. Lancet (London, England) 382, 889-899, doi:10.1016/s0140-6736(13)60022-7 (2013).
[62]. Zheng, R., Zeng, H., Zhang, S., Chen, T. & Chen, W. National estimates of cancer prevalence in China, 2011. Cancer letters 370, 33-38, doi:10.1016/j.canlet.2015.10.003 (2016).
[63]. Chen, W. et al. Cancer statistics in China, 2015. CA: a cancer journal for clinicians 66, 115-132, doi:10.3322/caac.21338 (2016).
[64]. Coker, O. O. et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut, doi:10.1136/gutjnl-2018-317178 (2018).
[65]. Feng, Q. et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nature communications 6, 6528, doi:10.1038/ncomms7528 (2015).
[66]. Nakatsu, G. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nature communications 6, 8727, doi:10.1038/ncomms9727 (2015).
[67]. Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254-258, doi:10.1038/nature11465 (2012).
[68]. He, Z. et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut, doi:10.1136/gutjnl-2018-317200 (2018).
[69]. Cuevas-Ramos, G. et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 107, 11537-11542, doi:10.1073/pnas.1001261107 (2010).
[70]. Vizcaino, M. I. & Crawford, J. M. The colibactin warhead crosslinks DNA. Nature chemistry 7, 411-417, doi:10.1038/nchem.2221 (2015).
[71]. Maddocks, O. D., Scanlon, K. M. & Donnenberg, M. S. An Escherichia coli effector protein promotes host mutation via depletion of DNA mismatch repair proteins. mBio 4, e00152-00113, doi:10.1128/mBio.00152-13 (2013).
[72]. Irrazabal, T., Belcheva, A., Girardin, S. E., Martin, A. & Philpott, D. J. The multifaceted role of the intestinal microbiota in colon cancer. Molecular cell 54, 309-320, doi:10.1016/j.molcel.2014.03.039 (2014).
[73]. Sears, C. L., Geis, A. L. & Housseau, F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. The Journal of clinical investigation 124, 4166-4172, doi:10.1172/jci72334 (2014).
[74]. Snezhkina, A. V. et al. The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBPbeta rather than Enterotoxigenic Bacteroides fragilis Infection. Oxidative medicine and cellular longevity 2016, 2353560, doi:10.1155/2016/2353560 (2016).
[75]. Wu, S., Morin, P. J., Maouyo, D. & Sears, C. L. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 124, 392-400, doi:10.1053/gast.2003.50047 (2003).
[76]. McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Advances in nutrition (Bethesda, Md.) 7, 418-419, doi:10.3945/an.116.012211 (2016).
[77]. Michelotti, G. A., Machado, M. V. & Diehl, A. M. NAFLD, NASH and liver cancer. Nature reviews. Gastroenterology & hepatology 10, 656-665, doi:10.1038/nrgastro.2013.183 (2013).
[78]. Starkel, P. & Schnabl, B. Bidirectional Communication between Liver and Gut during Alcoholic Liver Disease. Seminars in liver disease 36, 331-339, doi:10.1055/s-0036-1593882 (2016).
[79]. Reid, D. T. et al. Unique microbial-derived volatile organic compounds in portal venous circulation in murine non-alcoholic fatty liver disease. Biochimica et biophysica acta 1862, 1337-1344, doi:10.1016/j.bbadis.2016.04.005 (2016).
[80]. Loo, T. M. et al. Gut Microbiota Promotes Obesity-Associated Liver Cancer through PGE2-Mediated Suppression of Antitumor Immunity. Cancer discovery 7, 522-538, doi:10.1158/2159-8290.Cd-16-0932 (2017).
[81]. Szabo, G. Gut-liver axis in alcoholic liver disease. Gastroenterology 148, 30-36, doi:10.1053/j.gastro.2014.10.042 (2015).
[82]. Hendrikx, T. et al. Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut, doi:10.1136/gutjnl-2018-317232 (2018).
[83]. Plieskatt, J. L. et al. Infection with the carcinogenic liver fluke Opisthorchis viverrini modifies intestinal and biliary microbiome. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 27, 4572-4584, doi:10.1096/fj.13-232751 (2013).
[84]. Itthitaetrakool, U. et al. Chronic Opisthorchis viverrini Infection Changes the Liver Microbiome and Promotes Helicobacter Growth. PloS one 11, e0165798, doi:10.1371/journal.pone.0165798 (2016).
[85]. Schuijt, T. J. et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 65, 575-583, doi:10.1136/gutjnl-2015-309728 (2016).
[86]. Tamburini, S. & Clemente, J. C. Gut microbiota: Neonatal gut microbiota induces lung immunity against pneumonia. Nature reviews. Gastroenterology & hepatology 14, 263-264, doi:10.1038/nrgastro.2017.34 (2017).
[87]. Bradley, C. P. et al. Segmented Filamentous Bacteria Provoke Lung Autoimmunity by Inducing Gut-Lung Axis Th17 Cells Expressing Dual TCRs. Cell host & microbe 22, 697-704.e694, doi:10.1016/j.chom.2017.10.007 (2017).
[88]. Yuan, M., Meng, W., Liao, W. & Lian, S. Andrographolide Antagonizes TNF-alpha-Induced IL-8 via Inhibition of NADPH Oxidase/ROS/NF-kappaB and Src/MAPKs/AP-1 Axis in Human Colorectal Cancer HCT116 Cells. Journal of agricultural and food chemistry 66, 5139-5148, doi:10.1021/acs.jafc.8b00810 (2018).
[89]. McIntosh, F. M. et al. Phylogenetic distribution of genes encoding beta-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environmental microbiology 14, 1876-1887, doi:10.1111/j.1462-2920.2012.02711.x (2012).
[90]. Fuhrman, B. J. et al. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. The Journal of clinical endocrinology and metabolism 99, 4632-4640, doi:10.1210/jc.2014-2222 (2014).
[91]. Hullar, M. A., Burnett-Hartman, A. N. & Lampe, J. W. Gut microbes, diet, and cancer. Cancer treatment and research 159, 377-399, doi:10.1007/978-3-642-38007-5_22 (2014).
[92]. Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut microbiota. The Journal of clinical investigation 124, 4212-4218, doi:10.1172/jci72333 (2014).
[93]. Xie, G. et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. International journal of cancer 139, 1764-1775, doi:10.1002/ijc.30219 (2016).
[94]. Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. Journal of lipid research 47, 241-259, doi:10.1194/jlr.R500013-JLR200 (2006).
[95]. Miko, E. et al. Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochimica et biophysica acta. Bioenergetics 1859, 958-974, doi:10.1016/j.bbabio.2018.04.002 (2018).
[96]. Jan, M., Ebert, B. L. & Jaiswal, S. Clonal hematopoiesis. Seminars in hematology 54, 43-50, doi:10.1053/j.seminhematol.2016.10.002 (2017).
[97]. Meisel, M. et al. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557, 580-584, doi:10.1038/s41586-018-0125-z (2018).
[98]. Bailey, M. T. et al. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain, behavior, and immunity 25, 397-407, doi:10.1016/j.bbi.2010.10.023 (2011).
[99]. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature reviews. Neuroscience 13, 701-712, doi:10.1038/nrn3346 (2012).
[100]. Cussotto, S., Sandhu, K. V., Dinan, T. G. & Cryan, J. F. The Neuroendocrinology of the Microbiota-Gut-Brain Axis: A Behavioural Perspective. Frontiers in neuroendocrinology 51, 80-101, doi:10.1016/j.yfrne.2018.04.002 (2018).
[101]. Larauche, M., Kiank, C. & Tache, Y. Corticotropin releasing factor signaling in colon and ileum: regulation by stress and pathophysiological implications. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society 60 Suppl 7, 33-46 (2009).
[102]. Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724-728, doi:10.1038/s41586-018-0119-x (2018).
[103]. Egerod, K. L. et al. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Molecular metabolism 12, 62-75, doi:10.1016/j.molmet.2018.03.016 (2018).
[104]. Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Science translational medicine 6, 263ra158, doi:10.1126/scitranslmed.3009759 (2014).
[105]. Jacqueline, C. et al. Can intestinal microbiota be associated with non-intestinal cancers? Scientific reports 7, 12722, doi:10.1038/s41598-017-11644-9 (2017).
[106]. Aviles-Jimenez, F., Yu, G., Torres-Poveda, K., Madrid-Marina, V. & Torres, J. On the Search to Elucidate the Role of Microbiota in the Genesis of Cancer: The Cases of Gastrointestinal and Cervical Cancer. Archives of medical research 48, 754-765, doi:10.1016/j.arcmed.2017.11.008 (2017).
[107]. Boleij, A., van Gelder, M. M., Swinkels, D. W. & Tjalsma, H. Clinical Importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 53, 870-878, doi:10.1093/cid/cir609 (2011).
[108]. Zackular, J. P., Rogers, M. A., Ruffin, M. T. t. & Schloss, P. D. The human gut microbiome as a screening tool for colorectal cancer. Cancer prevention research (Philadelphia, Pa.) 7, 1112-1121, doi:10.1158/1940-6207.Capr-14-0129 (2014).
[109]. Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Molecular systems biology 10, 766, doi:10.15252/msb.20145645 (2014).
[110]. Flanagan, L. et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 33, 1381-1390, doi:10.1007/s10096-014-2081-3 (2014).
[111]. Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65, 1973-1980, doi:10.1136/gutjnl-2015-310101 (2016).
[112]. Viljoen, K. S., Dakshinamurthy, A., Goldberg, P. & Blackburn, J. M. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PloS one 10, e0119462, doi:10.1371/journal.pone.0119462 (2015).
[113]. Mima, K. et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA oncology 1, 653-661, doi:10.1001/jamaoncol.2015.1377 (2015).
[114]. Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science (New York, N.Y.) 350, 1079-1084, doi:10.1126/science.aad1329 (2015).
[115]. Tanabe, S. et al. Anti-inflammatory and Intestinal Barrier-protective Activities of Commensal Lactobacilli and Bifidobacteria in Thoroughbreds: Role of Probiotics in Diarrhea Prevention in Neonatal Thoroughbreds. Journal of equine science 25, 37-43, doi:10.1294/jes.25.37 (2014).
[116] Kaiser, J. Gut microbes shape response to cancer immunotherapy. Science (New York, N.Y.) 358, 573, doi:10.1126/science.358.6363.573 (2017).
[117]. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science (New York, N.Y.) 359, 91-97, doi:10.1126/science.aan3706 (2018).
[118]. Perales-Puchalt, A. et al. Frontline Science: Microbiota reconstitution restores intestinal integrity after cisplatin therapy. Journal of leukocyte biology 103, 799-805, doi:10.1002/jlb.5hi1117-446rr (2018).
[119]. Rossi, O. et al. Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Scientific reports 6, 18507, doi:10.1038/srep18507 (2016).
[120]. Martin, R. et al. Functional Characterization of Novel Faecalibacterium prausnitzii Strains Isolated from Healthy Volunteers: A Step Forward in the Use of F. prausnitzii as a Next-Generation Probiotic. Frontiers in microbiology 8, 1226, doi:10.3389/fmicb.2017.01226 (2017).
[121]. Pujada, A. et al. Matrix metalloproteinase MMP9 maintains epithelial barrier function and preserves mucosal lining in colitis associated cancer. Oncotarget 8, 94650-94665, doi:10.18632/oncotarget.21841 (2017).
[122]. Paul, B. et al. Impact of genistein on the gut microbiome of humanized mice and its role in breast tumor inhibition. PloS one 12, e0189756, doi:10.1371/journal.pone.0189756 (2017).
[123]. Kashinskaya, E. N., Andree, K. B., Simonov, E. P. & Solovyev, M. M. DNA extraction protocols may influence biodiversity detected in the intestinal microbiome: a case study from wild Prussian carp, Carassius gibelio. FEMS microbiology ecology 93, doi:10.1093/femsec/fiw240 (2017).
[124]. von Wintzingerode, F., Gobel, U. B. & Stackebrandt, E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS microbiology reviews 21, 213-229, doi:10.1111/j.1574-6976.1997.tb00351.x (1997).
[125]. Wen, C., He, Y., Xue, M., Liang, H. & Dong, J. [Biases on community structure during DNA extraction of shrimp intestinal microbiota revealed by high-throughput sequencing]. Wei sheng wu xue bao = Acta microbiologica Sinica 56, 130-142 (2016).
[126]. Lertpiriyapong, K. et al. Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut 63, 54-63, doi:10.1136/gutjnl-2013-305178 (2014).
[127]. Nelson, M. H., Diven, M. A., Huff, L. W. & Paulos, C. M. Harnessing the Microbiome to Enhance Cancer Immunotherapy. Journal of immunology research 2015, 368736, doi:10.1155/2015/368736 (2015).

Copyright © 2021 Pan Gu, Di Li, Gang Xu, Yingnan Sun, Minghua Wu Creative Commons License Publishing time:2021-06-30
This work is licensed under a Creative Commons Attribution 4.0 International License