Tumor-associated Macrophages(TAMs): An Available Biotarget for Therapeutic of Hepatocellular Carcinoma

Minni Zhang ( Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, 3 Xueyuan Road, Longhua District, Haikou 571199, Hainan, P.R China. )

Xue Shan ( Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, 3 Xueyuan Road, Longhua District, Haikou 571199, Hainan, P.R China. )

Haifeng Lin ( Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou 570311, Hainan, P.R China. )

Mingyue Zhu ( Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, 3 Xueyuan Road, Longhua District, Haikou 571199, Hainan, P.R China. )

Mengsen Li ( Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, 3 Xueyuan Road, Longhua District, Haikou 571199, Hainan, P.R China. )

https://doi.org/10.37155/2717-5278-0301-6

Abstract

Tumor associated macrophages (TAMs), as an important immune cell group in tumor microenvironment. TAMs are able to promote the growth, proliferation, invasion and metastasis of cancer cells, and regulate the function of immune cells, stimulate generation of cancer stem cells and mediate drug resistance of cancer cells by releasing various cytokines, growth factors and chemokines. According to different activation states and functions, macrophages can be polarized into M1 and M2 phenotypes under different tumor microenvironmental conditions and induced by specific cytokines. Hepatocellular carcinoma (HCC) is a malignant tumor originating in the liver, HCC has a trait in high recurrence and metastasis. HCC is a disease that seriously endangers human life and health due to the low survival rate. This review comprehensively analyzed the influence of TAMs on the occurrence and development of HCC, and regulation of signaling pathway tansduction in cancer cells mediated by TAMs, explore a new therapeutic strategy for therapeutic of HCC by targeting TAMs.

Keywords

Tumor-associated macrophages(TAMs); Macrophages polarization; Hepatocellular carcinoma; Targeting treatment

Full Text

PDF

References

[1]. Sung H, Ferlay J, Siegel R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin, 2021, 71(3): 209-249.
[2]. Craig A J, von Felden J, Garcia-Lezana T, et al. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol, 2020, 17(3): 139-152.
[3]. Zongyi Y, Xiaowu L. Immunotherapy for hepatocellular carcinoma. Cancer Lett, 2020, 470: 8-17.
[4]. Finn R S, Qin S, Ikeda M, et al. Atezolizumab plus Bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med, 2020, 382(20): 1894-1905.
[5]. Kelley R K. Atezolizumab plus Bevacizumab - A landmark in liver cancer[J]. N Engl J Med, 2020, 382(20): 1953-1955.
[6]. Straussman R, Morikawa T, Shee K, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature, 2012, 487(7408): 500-504.
[7]. Wagner J, Rapsomaniki M A, Chevrier S, et al. A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell, 2019, 177(5): 1330-1345.
[8]. Binnewies M, Roberts E W, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med, 2018, 24(5): 541-550.
[9]. Zhou J, Wang W, Li Q. Potential therapeutic targets in the tumor microenvironment of hepatocellular carcinoma: reversing the protumor effect of tumor-associated macrophages. J Exp Clin Cancer Res, 2021, 40(1): 73.
[10]. Dehne N, Mora J, Namgaladze D, et al. Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharmacol, 2017, 35: 12-19.
[11]. Murray P J, Wynn T A. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol, 2011, 11(11): 723-737.
[12]. Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell, 2019, 179(4): 829-845.
[13]. Sharma A, Seow J, Dutertre C A, et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell, 2020, 183(2): 377-394.
[14]. Cortez-Retamozo V, Etzrodt M, Newton A, et al. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A, 2012, 109(7): 2491-2496.
[15]. Long K B, Collier A I, Beatty G L. Macrophages: Key orchestrators of a tumor microenvironment defined by therapeutic resistance. Mol Immunol, 2019, 110: 3-12.
[16]. Liu Y C, Zou X B, Chai Y F, et al. Macrophage polarization in inflammatory diseases. Int J Biol Sci, 2014, 10(5): 520-529.
[17]. Franklin R A, Liao W, Sarkar A, et al. The cellular and molecular origin of tumor-associated macrophages. Science, 2014, 344(6186): 921-925.
[18]. Shand F H, Ueha S, Otsuji M, et al. Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes. Proc Natl Acad Sci U S A, 2014, 111(21): 7771-7776.
[19]. Aras S, Zaidi M R. TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer, 2017, 117(11): 1583-1591.
[20]. Noy R, Pollard J W. Tumor-associated macrophages: from mechanisms to therapy. Immunity, 2014, 41(1): 49-61.
[21]. Raggi C, Mousa H S, Correnti M, et al. Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies. Oncogene, 2016, 35(6): 671-682.
[22]. Lu J, Cao Q, Zheng D, et al. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int, 2013, 84(4): 745-755.
[23]. Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol, 2004, 25(12): 677-686.
[24]. Ohama H, Asai A, Ito I, et al. M2b macrophage elimination and improved resistance of mice with chronic alcohol consumption to opportunistic infections. Am J Pathol, 2015, 185(2): 420-431.
[25]. Ferrante C J, Pinhal-Enfield G, Elson G, et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation, 2013, 36(4): 921-931.
[26]. Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol, 2004, 25(12): 677-686.
[27]. Movahedi K, Laoui D, Gysemans C, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res, 2010, 70(14): 5728-5739.
[28]. Chen Y, Song Y, Du W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci, 2019, 26(1): 78.
[29]. Wang D, Yang L, Yue D, et al. Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Lett, 2019, 452: 244-253.
[30]. Zhou J, Ding T, Pan W, et al. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int J Cancer, 2009, 125(7): 1640-1648.
[31]. Liu C, Chikina M, Deshpande R, et al. Treg cells promote the SREBP1-dependent metabolic fitness of tumor-promoting macrophages via repression of CD8(+) T cell-derived interferon-gamma. Immunity, 2019, 51(2): 381-397.
[32]. Denning T L, Wang Y C, Patel S R, et al. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol, 2007, 8(10): 1086-1094.
[33]. Lohela M, Casbon A J, Olow A, et al. Intravital imaging reveals distinct responses of depleting dynamic tumor-associated macrophage and dendritic cell subpopulations. Proc Natl Acad Sci U S A, 2014, 111(47): E5086-E5095.
[34]. Park D J, Sung P S, Lee G W, et al. Preferential expression of programmed death ligand 1 protein in tumor-associated macrophages and its potential role in immunotherapy for hepatocellular carcinoma. Int J Mol Sci, 2021, 22(9).
[35]. Cai J, Qi Q, Qian X, et al. The role of PD-1/PD-L1 axis and macrophage in the progression and treatment of cancer. J Cancer Res Clin Oncol, 2019, 145(6): 1377-1385.
[36]. Yan W, Liu X, Ma H, et al. Tim-3 fosters HCC development by enhancing TGF-beta-mediated alternative activation of macrophages. Gut, 2015, 64(10): 1593-1604.
[37]. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010, 141(1): 52-67.
[38]. Gocheva V, Wang H W, Gadea B B, et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev, 2010, 24(3): 241-255.
[39]. Pastushenko I, Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol, 2019, 29(3): 212-226.
[40]. Yao R R, Li J H, Zhang R, et al. M2-polarized tumor-associated macrophages facilitated migration and epithelial-mesenchymal transition of HCC cells via the TLR4/STAT3 signaling pathway. World J Surg Oncol, 2018, 16(1): 9.
[41]. Fu X T, Dai Z, Song K, et al. Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int J Oncol, 2015, 46(2): 587-596.
[42]. Wu J, Zhang J, Shen B, et al. Long noncoding RNA lncTCF7, induced by IL-6/STAT3 transactivation, promotes hepatocellular carcinoma aggressiveness through epithelial-mesenchymal transition. J Exp Clin Cancer Res, 2015, 34: 116.
[43]. Moon H, Ju H L, Chung S I, et al. Transforming Growth Factor-beta Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail. Gastroenterology, 2017, 153(5): 1378-1391.
[44]. Xiao P, Long X, Zhang L, et al. Neurotensin/IL-8 pathway orchestrates local inflammatory response and tumor invasion by inducing M2 polarization of Tumor-Associated macrophages and epithelial-mesenchymal transition of hepatocellular carcinoma cells. Oncoimmunology, 2018, 7(7): e1440166.
[45]. Chen Y, Wen H, Zhou C, et al. TNF-alpha derived from M2 tumor-associated macrophages promotes epithelial-mesenchymal transition and cancer stemness through the Wnt/beta-catenin pathway in SMMC-7721 hepatocellular carcinoma cells. Exp Cell Res, 2019, 378(1): 41-50.
[46]. Zhang Y L, Li Q, Yang X M, et al. SPON2 Promotes M1-like Macrophage Recruitment and Inhibits Hepatocellular Carcinoma Metastasis by Distinct Integrin-Rho GTPase-Hippo Pathways. Cancer Res, 2018, 78(9): 2305-2317.
[47]. Liu G, Yin L, Ouyang X, et al. M2 Macrophages Promote HCC Cells Invasion and Migration via miR-149-5p/MMP9 Signaling. J Cancer, 2020, 11(5): 1277-1287.
[48]. Li L, Sun P, Zhang C, et al. MiR-98 modulates macrophage polarization and suppresses the effects of tumor-associated macrophages on promoting invasion and epithelial-mesenchymal transition of hepatocellular carcinoma. Cancer Cell Int, 2018, 18: 95.
[49]. Yin C, Han Q, Xu D, et al. SALL4-mediated upregulation of exosomal miR-146a-5p drives T-cell exhaustion by M2 tumor-associated macrophages in HCC. Oncoimmunology, 2019, 8(7): 1601479.
[50]. Liu G, Ouyang X, Sun Y, et al. The miR-92a-2-5p in exosomes from macrophages increases liver cancer cells invasion via altering the AR/PHLPP/p-AKT/beta-catenin signaling[J]. Cell Death Differ, 2020, 27(12): 3258-3272.
[51]. Metcalf S, Pandha H S, Morgan R. Antiangiogenic effects of zoledronate on cancer neovasculature. Future Oncol, 2011, 7(11): 1325-1333.
[52]. Tanaka M, Iwakiri Y. The Hepatic Lymphatic Vascular System: Structure, Function, Markers, and Lymphangiogenesis. Cell Mol Gastroenterol Hepatol, 2016, 2(6): 733-749.
[53]. Dirkx A E, Oude E M, Wagstaff J, et al. Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol, 2006, 80(6): 1183-1196.
[54]. Lin E Y, Li J F, Bricard G, et al. Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol Oncol, 2007, 1(3): 288-302.
[55]. Carmeliet P, Jain R K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801): 249-257.
[56]. Mondal S, Adhikari N, Banerjee S, et al. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur J Med Chem, 2020, 194: 112260.
[57]. Liu G, Yin L, Ouyang X, et al. M2 Macrophages promote HCC cells invasion and migration via miR-149-5p/MMP9 signaling. J Cancer, 2020, 11(5): 1277-1287.
[58]. Jung Y J, Isaacs J S, Lee S, et al. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J, 2003, 17(14): 2115-2117.
[59]. Zang M, Li Y, He H, et al. IL-23 production of liver inflammatory macrophages to damaged hepatocytes promotes hepatocellular carcinoma development after chronic hepatitis B virus infection. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(12): 3759-3770.
[60]. Meng Y M, Liang J, Wu C, et al. Monocytes/Macrophages promote vascular CXCR4 expression via the ERK pathway in hepatocellular carcinoma. Oncoimmunology, 2018, 7(3): e1408745.
[61]. Peng S H, Deng H, Yang J F, et al. Significance and relationship between infiltrating inflammatory cell and tumor angiogenesis in hepatocellular carcinoma tissues. World J Gastroenterol, 2005, 11(41): 6521-6524.
[62]. Foekens J A, Peters H A, Look M P, et al. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res, 2000, 60(3): 636-643.
[63]. Wyckoff J B, Wang Y, Lin E Y, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res, 2007, 67(6): 2649-2656.
[64]. Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol, 2004, 25(6): 280-288.
[65]. Namba H, Saenko V, Yamashita S. Nuclear factor-kB in thyroid carcinogenesis and progression: a novel therapeutic target for advanced thyroid cancer. Arq Bras Endocrinol Metabol, 2007, 51(5): 843-851.
[66]. Wang D, Li X, Li J, et al. APOBEC3B interaction with PRC2 modulates microenvironment to promote HCC progression. Gut, 2019, 68(10): 1846-1857.
[67]. Bao D, Zhao J, Zhou X, et al. Mitochondrial fission-induced mtDNA stress promotes tumor-associated macrophage infiltration and HCC progression. Oncogene, 2019, 38(25): 5007-5020.
[68]. Zhou B, Li C, Yang Y, et al. RIG-I promotes cell death in hepatocellular carcinoma by inducing M1 polarization of perineal macrophages through the RIG-I/MAVS/NF-kappa B pathway. Onco Targets Ther, 2020, 13: 8783-8794.
[69]. Sun S, Cui Y, Ren K, et al. 8-bromo-7-methoxychrysin reversed M2 polarization of tumor-associated macrophages induced by liver cancer stem-like cells. Anticancer Agents Med Chem, 2017, 17(2): 286-293.
[70]. Yin Y, Yao S, Hu Y, et al. The Immune-microenvironment confers chemoresistance of colorectal cancer through macrophage-derived IL6. Clin Cancer Res, 2017, 23(23): 7375-7387.
[71]. Gupta D K, Singh N, Sahu D K. TGF-beta mediated crosstalk between malignant hepatocyte and tumor microenvironment in hepatocellular carcinoma. Cancer Growth Metastasis, 2014, 7: 1-8.
[72]. Wan S, Zhao E, Kryczek I, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology, 2014, 147(6): 1393-1404.
[73]. Wan S, Zhao E, Kryczek I, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology, 2014, 147(6): 1393-1404.
[74]. Xu G, Feng D, Yao Y, et al. Listeria-based hepatocellular carcinoma vaccine facilitates anti-PD-1 therapy by regulating macrophage polarization. Oncogene, 2020, 39(7): 1429-1444.
[75]. Ma B, Cheng H, Mu C, et al. The SIAH2-NRF1 axis spatially regulates tumor microenvironment remodeling for tumor progression. Nat Commun, 2019, 10(1): 1034.
[76]. Penny H L, Sieow J L, Adriani G, et al. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncoimmunology, 2016, 5(8): e1191731.
[77]. El S R, Haibe Y, Amhaz G, et al. Metabolic Factors Affecting Tumor Immunogenicity: What Is Happening at the Cellular Level?. Int J Mol Sci, 2021, 22(4).
[78]. Chen F, Chen J, Yang L, et al. Extracellular vesicle-packaged HIF-1alpha-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol, 2019, 21(4): 498-510.
[79]. Noman M Z, Desantis G, Janji B, et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med, 2014, 211(5): 781-790.
[80]. Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 2008, 453(7196): 807-811.
[81]. Wang W, Bian H, Li F, et al. HBeAg induces the expression of macrophage miR-155 to accelerate liver injury via promoting production of inflammatory cytokines. Cell Mol Life Sci, 2018, 75(14): 2627-2641.
[82]. Liu C Y, Xu J Y, Shi X Y, et al. M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Invest, 2013, 93(7): 844-854.
[83]. Li X, Yao W, Yuan Y, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut, 2017, 66(1): 157-167.
[84]. Yao W, Ba Q, Li X, et al. A Natural CCR2 Antagonist Relieves Tumor-associated macrophage-mediated immunosuppression to produce a therapeutic effect for liver cancer. EBioMedicine, 2017, 22: 58-67.
[85]. Ban Y, Mai J, Li X, et al. Targeting Autocrine CCL5-CCR5 Axis reprograms immunosuppressive myeloid cells and reinvigorates antitumor immunity. Cancer Res, 2017, 77(11): 2857-2868.
[86]. Cambien B, Richard-Fiardo P, Karimdjee B F, et al. CCL5 neutralization restricts cancer growth and potentiates the targeting of PDGFRbeta in colorectal carcinoma. PLoS One, 2011, 6(12): e28842.
[87]. Jung K, Heishi T, Incio J, et al. Targeting CXCR4-dependent immunosuppressive Ly6C(low) monocytes improves antiangiogenic therapy in colorectal cancer. Proc Natl Acad Sci U S A, 2017, 114(39): 10455-10460.
[88]. Zhang M, Huang L, Ding G, et al. Interferon gamma inhibits CXCL8-CXCR2 axis mediated tumor-associated macrophages tumor trafficking and enhances anti-PD1 efficacy in pancreatic cancer. J Immunother Cancer, 2020, 8(1).
[89]. Chai Z T, Zhu X D, Ao J Y, et al. microRNA-26a suppresses recruitment of macrophages by down-regulating macrophage colony-stimulating factor expression through the PI3K/Akt pathway in hepatocellular carcinoma. J Hematol Oncol, 2015, 8: 56.
[90]. Huang R, Wang S, Wang N, et al. CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating beta-catenin/STAT3 signaling. Cell Death Dis, 2020, 11(4): 234.
[91]. Greten T F. Does CSF1R Blockade Turn into Friendly Fire?. Cancer Cell, 2017, 32(5): 546-547.
[92]. Zhang W, Zhu X D, Sun H C, et al. Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res, 2010, 16(13): 3420-3430.
[93]. Tan H Y, Wang N, Man K, et al. Autophagy-induced RelB/p52 activation mediates tumour-associated macrophage repolarisation and suppression of hepatocellular carcinoma by natural compound baicalin. Cell Death Dis, 2015, 6: e1942.
[94]. Ao J Y, Zhu X D, Chai Z T, et al. Colony-Stimulating Factor 1 Receptor Blockade Inhibits Tumor Growth by Altering the Polarization of Tumor-Associated Macrophages in Hepatocellular Carcinoma. Mol Cancer Ther, 2017, 16(8): 1544-1554.
[95]. Weiskopf K. Cancer immunotherapy targeting the CD47/SIRPalpha axis. Eur J Cancer, 2017, 76: 100-109.
[96]. Chen J, Zheng D X, Yu X J, et al. Macrophages induce CD47 upregulation via IL-6 and correlate with poor survival in hepatocellular carcinoma patients. Oncoimmunology, 2019, 8(11): e1652540.
[97]. Barkal A A, Weiskopf K, Kao K S, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol, 2018, 19(1): 76-84.
[98]. Chen H M, van der Touw W, Wang Y S, et al. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J Clin Invest, 2018, 128(12): 5647-5662.
[99]. Chen J, Li G, Meng H, et al. Upregulation of B7-H1 expression is associated with macrophage infiltration in hepatocellular carcinomas. Cancer Immunol Immunother, 2012, 61(1): 101-108.
[100]. Liu Y, Liu A, Xu Z, et al. XZH-5 inhibits STAT3 phosphorylation and causes apoptosis in human hepatocellular carcinoma cells. Apoptosis, 2011, 16(5): 502-510.
[101]. Li X, Yao W, Yuan Y, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut, 2017, 66(1): 157-167.
[102]. WeiXing C, Tiantian H, Qun N, et al. Inhibitory effect of hypoxia inducible factor-1 antisense oligonucleotide on growth of human hepatocellular carcinoma cells. Med Oncol, 2008, 25(1): 88-92.
[103]. Le Mercier I, Poujol D, Sanlaville A, et al. Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment. Cancer Res, 2013, 73(15): 4629-4640.
[104]. Tauriello D, Palomo-Ponce S, Stork D, et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature, 2018, 554(7693): 538-543.
[105]. Bennett S R, Carbone F R, Karamalis F, et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature, 1998, 393(6684): 478-480.
[106]. Xiang X, Wang J, Lu D, et al. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther, 2021, 6(1): 75.
[107]. Mantovani A, Marchesi F, Malesci A, et al. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol, 2017, 14(7): 399-416.
[108]. Dong N, Shi X, Wang S, et al. M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br J Cancer, 2019, 121(1): 22-33.
[109]. Xia S, Pan Y, Liang Y, et al. The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine, 2020, 51: 102610.
[110]. Xu G, Feng D, Yao Y, et al. Listeria-based hepatocellular carcinoma vaccine facilitates anti-PD-1 therapy by regulating macrophage polarization. Oncogene, 2020, 39(7): 1429-1444.

Copyright © 2022 Minni Zhang, Xue Shan, Haifeng Lin, Mingyue Zhu, Mengsen Li Creative Commons License Publishing time:2022-06-30
This work is licensed under a Creative Commons Attribution 4.0 International License