Virulent Bacteria as A Co-factor of Colon Carcinogenesis: Evidence from Two Monozygotic Patients

Iradj Sobhani ( 1-EC2M3-EA7375, Research team, Université Paris Est Creteil-UPEC; 2-Department of Gastroenterology, Henri Mondor Hospital, Assistance Publique Hopitaux de Paris (APHP), Paris, France and Oncomix )

Emma Bergsten ( 1-EC2M3-EA7375, Research team, Université Paris Est Creteil-UPEC )

Cecile Charpy ( 3-Department of Pathology Henri Mondor Hospital, Assistance Publique Hopitaux de Paris (APHP), Paris, France )

Denis Mestivier ( 1-EC2M3-EA7375, Research team, Université Paris Est Creteil-UPEC; 2-Department of Gastroenterology, Henri Mondor Hospital, Assistance Publique Hopitaux de Paris (APHP), Paris, France and Oncomix; 3-Department of Pathology Henri Mondor Hospital, Assistance Publique Hopitaux de Paris (APHP), Paris, France; 4-Bioinformatic Plateform, Institut de Recherche Mondor, Créteil, France )

https://doi.org/10.37155/2717-5278-2020-02-01-1

Abstract

Colorectal carcinoma (CRC) is a common disease with a poor prognosis. CRC results from the accumulation of DNA alterations in colonocytes through a multistage carcinogenesis process. Most CRCs are related to the environment, which influences microbiota composition in the colon. Here we report the analysis of the gut microbiota of two monozygotic twin sisters, one of whom suffering from advance colorectal tumor-infiltrated by immunotolerant T cells. Comparative analysis highlights the profound disequilibrium of the composition of the gut microbiota of CRC-displaying twin with overexpression of virulent bacteria such as E. coli, Shigella, and Clostridium species in the CRC patient’s feces in contrast with low level of bacterial species such as Faecalibacterium and Akkermansia usually enriched in the healthy adults’ microbial flora at the expense of an over-representation of pathogenic bacterial species. The disequilibrium in microbiota of the CRC patient’s feces as compared to her monozygotic twin sister is linked with inflammatory and immune cell infiltrate in the patient’s tumor tissue.

Keywords

Cancer; colon; microbiota; immune cells; virulent bacteria

Full Text

PDF

References

[1] Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics[J]. CA Cancer J Clin. 2011;61(2):69-90.
[2] Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer[J]. Nature. 2012;487(7407):330-337.
[3] Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal-tumor development[J]. N Engl J Med. 1988;319(9):525-532.
[4] Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features[J]. Histopathology. 2007;50(1):113-130.
[5] Foulkes WD. Inherited susceptibility to common cancers[J]. N Engl J Med. 2008;359(20):2143-2153.
[6] Graff RE, Möller S, Passarelli MN, Witte JS, Skytthe A, Christensen K, et al. Familial Risk and Heritability of Colorectal Cancer in the Nordic Twin Study of Cancer[J]. Clin Gastroenterol Hepatol. 2017;15(8):1256-1264.
[7] Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori infection and the development of gastric cancer[J]. N Engl J Med. 2001;345(11):784-789.
[8] Li S, Konstantinov SR, Smits R, Peppelenbosch MP. Bacterial Biofilms in Colorectal Cancer Initiation and Progression[J]. Trends Mol Med. 2017;23(1):18-30.
[9] Seow HF, Yip WY, Fifis T. Advances in targeted and immunobased therapies for colorectal cancer in the genomic era[J]. OncoTargets Ther. 2016;9(2016):1899-1920.
[10] Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, et al. Microbial Dysbiosis in Colorectal Cancer (CRC) Patients[J]. PLoS One. 2011;6(1): e16393.
[11] Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer[J]. Mol Syst Biol. 2014;10:766.
[12] Sobhani I, Bergsten E, Couffin S, Amiot A, Nebbad B, Barau C, et al. Colorectal cancer-associated microbiota contributes to oncogenic epigenetic signatures[J]. Proc Natl Acad Sci U S A. 2019;116(48):24285-24295.
[13] Huson D, Beier S, Flade I, Gorska A, El-Hadidi M, Mitra S, Ruscheweyh H, Tappu RD. MEGAN Community Edition - Interactive exploration and analysis of large-scale microbiome sequencing data[J]. PLoS Comput Biol. 2016;12(6):e1004957.
[14] Buchfink B, Xie C, Huson DH. Fast and Sensitive Protein Alignment using DIAMOND[J]. Nature Methods. 2015;12:59-60.
[15] Liu B, Zheng DD, Jin Q, Chen LH and Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface[J]. Nucleic Acids Res. 2019;47(D1):687-692.
[16] Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses[J]. Nat Commun. 2017;8(1):1784.
[17] Le Gouvello S, Bastuji-Garin S, Aloulou N, Mansour H, Chaumette M-T, Berrehar F, et al. High prevalence of Foxp3 and IL17 in MMR-proficient colorectal carcinomas[J]. Gut. 2008;57(6):772-779.
[18] Aloulou N, Bastuji-Garin S, Le Gouvello S, Abolhassani M, Chaumette MT, Charachon A, Leroy K, Sobhani I. Involvement of the leptin receptor in the immune response in intestinal cancer[J]. Cancer Res. 2008;68(22):9413-22.
[19] Arthur JC, Jobin Ch. The complex interplay between inflammation, the microbiota and colorectal cancer[J]. Gut Microbes. 2013;4(3):253-258.
[20] Dedon PC, Tannenbaum SR. Reactive nitrogen species in the chemical biology of inflammation[J]. Arch Biochem Biophys. 2004;423(1):12-22.
[21] Dejea CM, Sears CL. Do biofilms confer a pro-carcinogenic state? Gut Microbes[J]. 2016;7(1):54-57.
[22] Lochner M, Peduto L, Cherrier M, Sawa S, Langa F, Varona R, et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+ T cells[J]. J Exp Med. 2008;205(6):1381-1393.
[23] Teng MWL, Kershaw MH, Moeller M, Smyth MJ, Darcy PK. Immunotherapy of cancer using systemically delivered gene-modified human T lymphocytes[J]. Hum Gene Ther. 2004;15(7):699-708.
[24] Dominguez-Valentin M, Sampson JR, Seppälä TT, Ten Broeke SW, Plazzer J-P, Nakken S, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch Syndrome Database[J]. Genet Med. 2020;22(1):15-25.
[25] Simoni Y, Becht E, Fehlings M, Loh CY, Koo S-L, Teng KWW, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates[J]. Nature. 2018;557(7706):575-579.
[26] Schmidt TS, Hayward MR, Coelho LP, Li SS, Costea PI, Voigt AY, et al. Extensive transmission of microbes along the gastrointestinal tract[J]. eLife. 2019; 8: e42693.
[27] Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity. 2015;42(2):344-355.
[28] Xiao L, Zhang Q, Peng Y, Wang D, Liu Y. The effect of periodontal bacteria infection on incidence and prognosis of cancer: A systematic review and meta-analysis[J]. Medicine (Baltimore). 2020;99(15):e19698.
[29] Gharaibeh RZ, Jobin C. Microbiota and cancer immunotherapy: in search of microbial signals[J]. Gut. 2019;68(3):385-388.

Copyright © Creative Commons License Publishing time:2020-10-30
This work is licensed under a Creative Commons Attribution 4.0 International License