TEAD1在小鼠急性心肌梗死后心肌组织中的表达作用
张 驰 ( 宁夏医科大学临床医学院 )
燕 茹 ( 宁夏医科大学总医院心脏中心 )
贾绍斌 ( 宁夏医科大学总医院心脏中心 宁夏医科大学 宁夏医科大学总医院医学科学研究院 )
https://doi.org/10.37155/2661-4766-0506-62Abstract
目的: 观察TEA转录因子1( TEAD1)在小鼠急性心肌梗死后心肌组织中的表达情况及细胞定位,进 一步探讨TEAD1在急性心肌梗死后作用及相关机制。 方法: 将40只6周龄C57BL/6雄性小鼠随机分为急性心肌梗死组 ( AMI组)和假手术组( Sham组), AMI组通过结扎冠状动脉左前降支近端的方法建立急性心肌梗死模型,造模成 功以观察即刻心电图ST段改变判断, Sham组仅用6-0手术线穿过冠状动脉左前降支近端但不结扎。两组分别于术后 1、 3、 7、 14天取材,进行HE染色及Masson染色观察急性心肌梗死后心肌组织的病理改变。免疫组化检测转录因子 TEAD1和巨噬细胞标志物CD68在急性心肌梗死后小鼠心肌组织中的表达情况;免疫荧光双标法观察TEAD1在急性心 肌梗死后心肌组织中是否在巨噬细胞中高表达。 结果: TEAD1免疫组化结果显示, Sham组和AMI组在不同时间均在 心肌细胞核可见TEAD1少量表达;与同时间点Sham组相比, AMI组各时间点TEAD1表达量明显增加( P均 < 0.01), AMI组各时间点TEAD1表达呈先增后减的变化趋势,且主要在梗死交界区表达,其中AMI组第3天时表达量最多, 且AMI组相邻各时间点TEAD1表达量之间有明显统计学差异( P均 < 0.001); CD68免疫组化结果显示,与同时间点 Sham组相比, AMI组各时间点CD68表达量明显增加( P均 < 0.001), AMI组各时间点CD68表达呈先增后减的变化趋 势,且主要在梗死交界区表达,其中AMI组第3天时表达量最多,且AMI组相邻各时间点CD68表达量之间有明显统计 学差异( P均 < 0.001);免疫荧光双标结果显示TEAD1在AMI组心肌组织中的巨噬细胞中高表达,除第14天外,与同 时间点Sham组相比,表达TEAD1的巨噬细胞数量在AMI组各时间点明显增加( P均 < 0.05),表达TEAD1的巨噬细胞 数量在AMI组各时间点呈先增后减的变化趋势,且主要在梗死交界区表达,其中AMI组第3天时表达量最多,且AMI 组相邻各时间点表达TEAD1的巨噬细胞数量之间有明显统计学差异( P均 < 0.01)。 结论: 转录因子TEAD1和巨噬细 胞标志物CD68在小鼠急性心肌梗死后心肌组织中都呈现表达增加的特点,在急性心肌梗死后第3天表达量最多,并且 主要在梗死交界区表达; TEAD1除了心肌细胞表达外,可以定位在急性心肌梗死后梗死交界区的巨噬细胞中。
Keywords
TEAD1;急性心肌梗死;巨噬细胞;小鼠Full Text
PDFReferences
and Functions of Fibroblasts and Myofibroblasts in
Myocardial Infarction[J]. Cells, 2022, 11(9):1386.
[2] Xin M, Kim Y, Sutherland L B, et al. Hippo pathway
effector Yap promotes cardiac regeneration[J]. Proceedings
of the National Academy of Sciences of the United States of
America, 2013, 110(34):13839-13844.
[3] Li Y, Feng J, Song S, et al. gp130 Controls
Cardiomyocyte Proliferation and Heart Regeneration[J].
Circulation, 2020, 142(10):967-982.
[4] Stewart A F, Larkin S B, Farrance I K, et al. Insights
into transcription enhancer factor 1 (TEF-1) activity from
the solution structure of the TEA domain[J]. The Journal of
biological chemistry, 1994, 269(5):3147-3150.
[5] Li Z, Zhao B, Wang P, et al. Structural insights into the
YAP and TEAD complex[J]. Genes & development, 2010,
24(3):235-240.
[6] Liu R, Lee J, Kim B S, et al. Tead1 is required for
maintaining adult cardiomyocyte function, and its loss
results in lethal dilated cardiomyopathy[J]. JCI Insight, 2017,
2(17):93343.
[7] Chen Z, Friedrich G A, Soriano P. Transcriptional
enhancer factor 1 disruption by a retroviral gene trap leads
to heart defects and embryonic lethality in mice[J]. Genes &
development, 1994, 8(19):2293-2301.
[8] Tsika R W, Ma L, Kehat I, et al. TEAD-1 overexpression
in the mouse heart promotes an age-dependent heart
dysfunction[J]. The Journal of biological chemistry, 2010,
285(18):13721-13735.
[9] Liu R, Jagannathan R, Li F, et al. Tead1 is required
for perinatal cardiomyocyte proliferation[J]. PLoS One, 2019,
14(2):e0212017.
[10] Mia M M, Cibi D M, Abdul Ghani S A B, et al.
YAP/TAZ deficiency reprograms macrophage phenotype and
improves infarct healing and cardiac function after myocardial
infarction[J]. PLoS biology, 2020, 18(12):e3000941[11]马丽媛,王增武,樊静,et al.《中国心血管健康
与疾病报告2022》要点解读[J].中国全科医学,2023,
26(32):3975-3994.
[12] Aronow W S. Heart-Failure–Complicating Acute
Myocardial Infarction[J]. Clinics in Geriatric Medicine, 2007,
23(1):123-139.
[13] Jennifer F, R O A, P Z E. Arrhythmias After Acute
Myocardial Infarction[J]. The Yale journal of biology and
medicine, 2023, 96(1):83-94.
[14] Heallen T, Morikawa Y, Leach J, et al. Hippo
signaling impedes adult heart regeneration[J]. Development
(Cambridge, England), 2013, 140(23):4683-4690.
[15] Leach J P, Heallen T, Zhang M, et al. Hippo pathway
deficiency reverses systolic heart failure after infarction[J].
Nature, 2017, 550(7675):260-264.
[16] Wang F, Li M, Zhang A, et al. PCSK9 Modulates
Macrophage Polarization-Mediated Ventricular Remodeling
after Myocardial Infarction[J]. Journal of Immunology
Research, 2022, 2022:7685796.
[17] Jung M, Ma Y, Iyer R P, et al. IL-10 improves cardiac
remodeling after myocardial infarction by stimulating M2
macrophage polarization and fibroblast activation[J]. Basic
Research in Cardiology, 2017, 112(3).
[18] Ning Y, Huang P, Chen G, et al. Atorvastatinpretreated mesenchymal stem cell-derived extracellular
vesicles promote cardiac repair after myocardial infarction
via shifting macrophage polarization by targeting microRNA-
139-3p/Stat1 pathway[J]. BMC Medicine, 2023, 21(1).
[19] Simoes F C, Cahill T J, Kenyon A, et al. Macrophages
directly contribute collagen to scar formation during
zebrafish heart regeneration and mouse heart repair[J]. Nature
Communications, 2020, 11(1):600.
[20] Bevan L, Lim Z W, Venkatesh B, et al. Specific
macrophage populations promote both cardiac scar deposition
and subsequent resolution in adult zebrafish[J]. Cardiovascular
research, 2020, 116(7):1357-1371.
[21] Bruton F A, Kaveh A, Ross-Stewart K M, et al.
Macrophages trigger cardiomyocyte proliferation by
increasing epicardial vegfaa expression during larval
zebrafish heart regeneration[J]. Developmental Cell, 2022,
57(12):1512-1528 e1515.
[22] Aurora A B, Porrello E R, Tan W, et al. Macrophages
are required for neonatal heart regeneration[J]. The Journal of
clinical investigation, 2014, 124(3):1382-1392.
[23] Godwin J W, Debuque R, Salimova E, et al.
Heart regeneration in the salamander relies on macrophagemediated control of fibroblast activation and the extracellular
landscape[J]. NPJ Regenerative medicine, 2017, 2(1):145-
147.
[24] Hulsmans M, Sager H B, Roh J D, et al. Cardiac
macrophages promote diastolic dysfunction[J]. The Journal of
experimental medicine, 2018, 215(2):423-440.
[25] Jackson B M, Gorman J H, Moainie S L, et al.
Extension of borderzone myocardium in postinfarction dilated
cardiomyopathy[J]. J Am Coll Cardiol, 2002, 40(6):1160-
1167.
[26] Jin P, Wang E, Wang Y H, et al. Central zone of
myocardial infarction: a neglected target area for heart cell
therapy[J]. Journal of cellular and molecular medicine, 2012,
16(3):637-648.
Copyright © 2024 张 驰,燕 茹,贾绍斌 Publishing time:2023-12-31
This work is licensed under a Creative Commons Attribution 4.0 International License