红花黄色素对老年大鼠认知功能障碍的影响及机制

郑 诗 ( 广东省第二人民医院 )

张 辉 ( 广东省第二人民医院 )

梁 飞 ( 广东省第二人民医院 )

https://doi.org/10.37155/2661-4766-0602-41

Abstract

目的:探究红花黄色素对老年大鼠认知功能障碍的作用效果及机制,并探讨红花黄色素剂量高低与作用 效果之间关系,为认知功能障碍的防治提供了新方向。方法:我们选择25只15-16周SD大鼠,所有大鼠结束适应性饲 养后,均予D-半乳糖皮下注射构建大鼠衰老模型,随机分为5组(每组5只),分别是对照组、模型组、低剂量组、高 剂量组、高剂量 抑制剂组,其中低剂量组、高剂量组、高剂量+抑制剂组分别由尾静脉注射1ml/kg、5ml/kg、5ml/kg 的红花黄色素注射液,而高剂量+抑制剂组进行红花黄色素注射后一并完成腹腔注射1.5mg/kg LY294002,对照组、模 型组分别注射5ml/kg生理盐水。除对照组外,其他各组均进行七氟烷麻醉,七氟烷浓度3.2%,流量2L/min,持续6小 时。麻醉后进行水迷宫实验,检测各组大鼠潜伏期、穿越平台次数,采用ELISA检测大鼠血清TNF-α、IL-10水平,HE 染色大鼠脑组织,TUNEL染色检测海马区凋亡情况及计算凋亡率,采用Western Blot检测海马区组织PI3K、AKT蛋白 水平。结果:水迷宫结果显示麻醉后各时间点模型组潜伏期均比对照组明显延长(P < 0.05),高剂量组潜伏期较模 型组缩短(P < 0.05),而低剂量组在麻醉后第3-5天潜伏期与模型组相比稍缩短,但差异无统计学意义(P > 0.05), 高剂量 抑制剂组与高剂量组相比,两组潜伏期未见明显差异(P > 0.05);穿越平台次数结果显示,高剂量组和低剂 量组的穿越平台次数较模型组增多(P < 0.05),高、低剂量两组穿越平台次数相比差异无统计学意义(P > 0.05), 高剂量 抑制剂组与高剂量组穿越平台次数相比差异无统计学意义(P > 0.05);ELISA结果显示高剂量组和低剂量组 血清TNF-α含量均低于模型组,IL-10均高于模型组(P < 0.05);低剂量组与高剂量组相比,两组TNF-α差异无统计学 意义(P > 0.05),而高剂量组IL-10较低剂量组升高更明显(P < 0.05);HE染色结果提示模型组脑组织结构紊乱, 炎症细胞浸润,而低、高剂量组较模型组大鼠脑组织结构清晰,炎症浸润较少;TUNEL染色结果显示低、高剂量组海 马区神经元凋亡率较模型组减轻(P < 0.05),高剂量组与低剂量组相比,凋亡率无显著差异(P > 0.05);脑海马取 组织Western blot结果提示高剂量组和低剂量组PI3K含量较模型组稍升高,但差异无统计学意义(P > 0.05),而高剂 量组、低剂量组AKT蛋白水平较明显模型组下降,且低剂量组AKT含量下降更明显(P < 0.05)。结论:红花黄色素 能有效改善老年大鼠麻醉后认知功能障碍,抑制炎症,抑制神经元凋亡,具有潜在的神经保护功效,为POCD的防治 提供了新方向,红花黄色素剂量高低与改善效果强弱并不完全一致,红花黄色素干预剂量仍需要后续研究,本研究结 果尚不支持红花黄色素改善认知功能障碍的机制与PI3K/AKT通路有关。

Keywords

红花黄色素;七氟烷;认知功能障碍;神经炎症;PI3K/AKT通路

Full Text

PDF

References

[1] Evered L, Scott DA, Silbert B, et al. Postoperative
cognitive dysfunction is independent of type of surgery
and anesthetic. Anesth Analg(S0003-2999).2011
May;112(5):1179-85.
[2] Monk TG, Weldon BC, Garvan CW, et al. Predictors
of cognitive dysfunction after major noncardiac surgery.
Anesthesiology(S0003-3022). 2008 Jan;108(1):18-30.
[3] Steinmetz J, Christensen KB, Lund T, et al. Long_x0002_term consequences
of postoperative cognitive dysfunction.
Anesthesiology(S0003-3022). 2009 Mar;110(3):548-55.
[4] Abildstrom H, Rasmussen LS, Rentowl P, et al.
Cognitive dysfunction 1-2 years after non-cardiac surgery
in the elderly. ISPOCD group. International Study of PostOperative
Cognitive Dysfunction. Acta Anaesthesiol
Scand(S0001-5172). 2000 Nov;44(10):1246-51.
[5] Moller JT, Cluitmans P, Rasmussen LS, et al. Longterm
postoperative cognitive dysfunction in the elderly:
ISPOCD1 study. Lancet(S0140-6736), 1998 Mar 21;
351(9106):857-61.
[6] Hudetz JA, Iqbal Z, Gandhi SD, et al. Postoperative
delirium and short-term cognitive dysfunction occur more
frequently in patients undergoing valve surgery with or
without coronary artery bypass graft surgery compared
with coronary artery bypass graft surgery alone: results of a
pilot study. J Cardiothorac Vasc Anesth(S 1053-0770). 2011
Oct;25(5):811-6.
[7] Hudetz JA, Patterson KM, Iqbal Z, et al. Metabolic
syndrome exacerbates short-term postoperative cognitive
dysfunction in patients undergoing cardiac surgery: results of
a pilot study. J Cardiothorac Vasc Anesth(S1053-0770). 2011
Apr;25(2):282-7.
[8] Dallmeier D, Larson MG, Vasan RS, et al.Metabolic
syndrome and inflammatory biomarkers: a communitybased
cross-sectional study at the Framingham Heart Study.
Diabetol Metabol Syndr(S1758-5996). 2012 Jun 20;4(1):28.
[9] Safavynia SA, Goldstein PA. The Role of Neuroin
flammation in Postoperative Cognitive Dysfunction: Moving
From Hypothesis to Treatment. Front Psychiatry(S 1664-
0640). 2019 Jan 17;9:752.
[10] Mahanna-Gabrielli E, Schenning KJ, Eriksson LI, et
al. State of the clinical science of perioperative brain health:
report from the American Society of Anesthesiologists Brain
Health Initiative Summit 2018. Br J Anaesth(S0007-0912).
2019 Oct;123(4):464-478.
[11] Terrando N, Monaco C, Ma D, et al. Tumor necrosis
factor-alpha triggers a cytokine cascade yielding postoperative
cognitive decline. Proc Natl Acad Sci USA(S 0027-8424).
2010 Nov 23;107(47):20518-22.
[12] Fidalgo AR, Cibelli M, White JPM, et al. Systemic
inflammation enhances surgery-induced cognitive dysfunction
in mice. Neurosci Lett(S0304-3940). 2011 Jul 1;498(1):63-6.
[13] Van Harten AE, Scheeren TWL, Absalom
AR. A review of postoperative cognitive dysfunction
and neuroinflammation associated with cardiac surgery
and anaesthesia. Anesthesiology(S0003-3022). 2012
Mar;67(3):280-93.
[14] Subramaniyan S, Terrando N. Neuroinflammation
and Perioperative Neurocognitive Disorders. Anesth Analg
(S0003-2999). 2019 Apr; 128(4):781-788.
[15] Saxena S, Lai IK, Li R, et al. Neuroinflammation
is a putative target for prevention and treatment of
perioperative neurocognitive disorders. BRITISH MEDICAL
BULLETIN(S0007-1420). 2019;130:125–135.
[16] Berger M, Nadler JW, Friedman A, et al. The
effect of propofol versus isoflurane anesthesia on human
cerebrospinal fluid markers of alzheimer’s disease: results of
a randomized trial. J Alzheimers Dis(S1387-2877). 2016 Apr
15;52(4):1299-310.
[17] Hirsch J, Vacas S, Terrando N, et al. Perioperative
cerebrospinal fluid and plasma inflammatory markers after
orthopedic surgery. J Neuroinflammation(S1742-2094). 2016
Aug 30;13(1):211.
[18] Cianciulli A, Porro C, Calvello R, et al.Microglia
mediated neuroinflammation: focus on PI3K modulation.
Biomolecules(S2218-273X). 2020 Jan 14;10(1):137.
[19] Weichhart T, Saemann MD. The PI3K/Akt/mTOR
pathway in innate immune cells: emerging therapeutic
applications. Ann Rheum Dis(S0003-4967). 2008;67(Suppl
3):iii70–4.
[20] Hawkins PT, Stephens LR. PI3K signalling in
inflammation. Biochim Biophys Acta (S0006-3002). 2015
Jun;1851(6):882-97.
[21] Chu E, Mychasiuk R, Hibbs ML, et al. Dysregulated
phosphoinositide 3-kinase signaling in microglia: shaping
chronic neuroinflammation. J Neuroinflammation (S1742-
2094). 2021 Nov 27;18(1):276.
[22] Glumac S, Kardum G, Sodic L, et al. Longitudinal
assessment of preoperative dexamethasone administration on
cognitive function after cardiac surgery: a 4-year follow-up of
a randomized controlled trial. BMC Anesthesiol(S1471-2253).
2021 Apr 23;21(1):129.
[23] Oberman K, Hovens I, de Haan J, et al. Acute preoperative
ibuprofen improves cognition in a rat model for
postoperative cognitive dysfunction. J Neuroinflammation
(S1742-2094). 2021 Jul 8;18(1):156.
[24] Wang Y, Machizawa MG, Lisle T, et al. Suppression
of Neuroinflammation Attenuates Persistent Cognitive and
Neurogenic Deficits in a Rat Model of Cardiopulmonary
Bypass. Front Cell Neurosci(S1662-5102). 2022 Feb
24;16:780880.
[25] Hu J, Feng X, Valdearcos M, et al. Interleukin-6
is both necessary and sufficient to produce perioperative
neurocognitive disorder in mice. Br J Anaesth(S0007-0912).
2018 Mar;120(3):537-545.
[26] Delshad E, Yousefi M, Sasannezhad P, et al. Medical
uses of Carthamus tinctorius L. (Safflower): a comprehensive
review from Traditional Medicine to Modern Medicine.
Electron Physician(S2008-5842). 2018 Apr 25;10(4):6672-
6681.
[27] Lu QY, Ma JQ, Duan YY, et al. Carthamin Yellow
Protects the Heart Against Ischemia/Reperfusion Injury With
Reduced Reactive Oxygen Species Release and Inflammatory
Response. J Cardiovasc Pharmacol(S0160-2446). 2019
Sep;74(3):228-234.
[28] Kim JH , He MT , Kim MJ , et al. Safflower
(Carthamus tinctorius L.) seed attenuates memory impairment
induced by scopolamine in mice via regulation of cholinergic
dysfunction and oxidative stress. Food Funct(S2042-6496).
2019 Jun 19;10(6):3650-3659.
[29] Yu SY, Lee YJ, Kim JD, et al. Phenolic composition,
antioxidant activity and anti-adipogenic effect of hot water
extract from safflower (Carthamus tinctorius L.) seed.
Nutrients(S2072-6643). 2013 Nov 28;5(12):4894-907.
[30] Xuan J, Huang M, Lu Y, et al. Economic Evaluation
of Safflower Yellow Injection for the Treatment of Patients
with Stable Angina Pectoris in China: A Cost-Effectiveness
Analysis. J Altern Complement Med(S1075-5535). 2018
Jun;24(6):564-569.
[31] Jin X, Shi L, Chang F, et al. Efficacy and Safety of
Safflower Yellow in Early Diabetic Nephropathy: A MetaAnalysis.
Evid Based Complement Alternat Med(S 1741-
427X). 2019 Feb 14;2019:8065376.
[32] Azman KF, Zakaria R. D-Galactose-induced
accelerated aging model: an overview. Biogerontology
(S1389-5729). 2019 Dec;20(6):763-782.
[33] Cebe T, Atukeren P, Yanar K, et al. Oxidation
scrutiny in persuaded aging and chronological aging at
systemic redox homeostasis level. Exp Gerontol(S0531-5565).
2014 Sep;57:132-40.
[34] Yanar K, Aydın S, Cakatay U, et al. Protein
and DNA oxidation in different anatomic regions of rat
brain in a mimetic ageing model. Basic Clin Pharmacol
Toxicol(S1742-7835). 2011 Dec;109(6):423-33.
[35] Miller D, Lewis SR, Pritchard MW, et al.
Intravenous versus inhalational maintenance of anaesthesia
for postoperative cognitive outcomes in elderly people
undergoing non-cardiac surgery. Cochrane Database Syst
Rev(S1469-493X). 2018 Aug 21;8(8):CD012317.
[36] Purdon PL, Pavone KJ, Akeju O, et al. The ageing
brain: age-dependent changes in the electroencephalogram
during propofol and sevoflurane general anaesthesia. Br J
Anaesth(S0007-0912). 2015 Jul;115 Suppl 1(Suppl 1):i46-i57.
[37] Zhang L, Zhang J, Yang L, et al. Isoflurane
and sevoflurane increase interleukin-6 levels through the
nuclear factor-kappa B pathway in neuroglioma cells. Br J
Anaesth(S0007-0912). 2013 Jun;110 Suppl 1(Suppl 1):i82-91.
[38] Haseneder R, Kratzer S, von Meyer L, et al.
Isoflurane and sevoflurane dose-dependently impair
hippocampal long-term potentiation. Eur J Pharmacol (S0014-
2999). 2009 Nov 25;623(1-3):47-51.
[39] Purdon PL, Pavone KJ, Akeju O, et al. The ageing
brain: age-dependent changes in the electroencephalogram
during propofol and sevoflurane general anaesthesia. Br J
Anaesth(S0007-0912). 2015 Jul;115 Suppl 1(Suppl 1):i46-i57.
[40] Wang YP, Guo Y, Wen PS, et al. Three Ingredients
of Safflower Alleviate Acute Lung Injury and Inhibit
NET Release Induced by Lipopolysaccharide. Mediators
Inflamm(S0962-9351). 2020 Feb 29;2020:2720369.
[41] Fu PK, Pan TL, Yang CY, et al. Carthamus tinctorius
L. ameliorates brain injury followed by cerebral ischemiareperfusion
in rats by antioxidative and anti-inflammatory
mechanisms. Iran J Basic Med Sci(S2008-3866). 2016 Dec;19
(12):1368-1375.
[42] Harston RK, McKillop JC, Moschella PC, et al.
Rapamycin treatment augments both protein ubiquitination
and Akt activation in pressure-overloaded rat myocardium.
Am J Physiol Heart Circ Physiol(S0363-6135). 2011 May;
300(5) : H1696-706.
[43]Yang J, Li S, Wang L, et al. Ginsenoside Rg3
Attenuates Lipopolysaccharide-Induced Acute Lung Injury
via MerTK-Dependent Activation of the PI3K/AKT/mTOR
Pathway. Front Pharmacol(S1663-9812). 2018 Aug 2;9:850.
[44] Chen L, Xiang Y, Kong L, et al. Hydroxysafflor
yellow A protects against cerebral ischemia-reperfusion injury
by anti-apoptotic effect through PI3K/Akt/GSK3β pathway in
rat. Neurochem Res(S0364-3190). 2013 Nov;38 (11) :2268-
75.
[45] Lv Z, Che L, Du Y, et al. Mechanism of Mongolian
Medicine Eerdun Wurile in Improving Postoperative
Cognitive Dysfunction Through Activation of the PI3K
Signaling Pathway. Front Neurosci(S1662-453X). 2022 Jan
14;15:769759.
[46] Du Y, Cui H, Xiao Y, et al. The mechanism of
lipopolysaccharide administration-induced cognitive function
impairment caused by glucose metabolism disorder in adult
rats. Saudi J Biol Sci(S1319-562X). 2019 Sep;26(6):1268-
1277.
[47] Wang P, Cao J, Liu N, et al. Protective Effects of
Edaravone in Adult Rats with Surgery and Lipopolysaccharide
Administration-Induced Cognitive Function Impairment.
PLoS One(S1932-6203). 2016 Apr 26;11(4):e0153708.
[48] Wang N, Wang M. Dexmedetomidine suppresses
sevoflurane anesthesia-induced neuroinflammation
through activation of the PI3K/Akt/mTOR pathway. BMC
Anesthesiol(S1471-2253). 2019 Jul 27;19(1):134.
[49] Ma Q, Ruan YY, Xu H, et al. Safflower
yellow reduces lipid peroxidation, neuropathology, tau
phosphorylation and ameliorates amyloid beta-induced
impairment of learning and memory in rats. Biomed
Pharmacother(S0753-3322). 2015 Dec;76:153-64.

Copyright © 2024 郑 诗,张 辉,梁 飞 Creative Commons License Publishing time:2024-04-30
This work is licensed under a Creative Commons Attribution 4.0 International License