肠道微生物群与胃食管反流病的因果关系:两样本孟德尔随机化分析
周嘉伟 ( 暨南大学附属广东省第二人民医院 )
李晓锋 ( 暨南大学附属广东省第二人民医院 )
李海量 ( 暨南大学附属广东省第二人民医院 )
杨 倜 ( 暨南大学附属广东省第二人民医院 )
黎 程 ( 暨南大学附属广东省第二人民医院 )
https://doi.org/10.37155/2661-4766-0603-1Abstract
目的:利用孟德尔随机化(Mendelian randomization,MR)分析研究肠道微生物群与胃食管反流病 (Gastroesophageal reflux disease,GERD)的因果关系,为研究GERD的发病机制及其潜在的预防和治疗策略提供遗 传学视角。方法:筛选数据后使用逆方差加权法(inverse variance weighted,IVW)、加权众数法(weighted mode estimate)、模型选择法(MR-Egger)和加权中位数法(weighted median estimate)进行MR分析;再行敏感性分析和 反向MR分析,从而确保结果的有效性。结果:两样本孟德尔随机化(two-sample Mendelian randomization,TSMR) 分析结果显示8类细菌与GERD相关,包括4种危险因素和4种保护因素。GERD的风险与双歧杆菌科、双歧杆菌目、克 里斯滕森菌科、臭杆菌属呈负相关,与柔膜体纲、软壁菌门、理研菌科和普雷沃氏菌属9呈正相关;敏感性分析未发 现异质性和水平多效性,反向MR分析未发现肠道菌群与GERD之间存在反向因果关系。结论:通过TSMR,我们确立 了肠道菌群(8类)与GERD之间的因果关系,从而为研究GERD发病机制及其预防和治疗的潜在策略提供了创新性的 遗传学观点。
Keywords
孟德尔随机化;肠道菌群;胃食管反流病;因果关系Full Text
PDFReferences
diagnosis and management of gastroesophageal reflux
disease[J]. BMJ, 2020,371: m3786.
[2] MARET-OUDA J, MARKAR S R, LAGERGREN
J. Gastroesophageal Reflux Disease: A Review[J]. JAMA,
2020,324(24): 2536-2547.
[3] GRICE E A, SEGRE J A. The human microbiome:
our second genome[J]. Annu Rev Genomics Hum Genet,
2012,13: 151-170.
[ 4 ] S U G I H A R T O N O T , F A U Z I A K A ,
MIFTAHUSSURUR M, et al. Analysis of gastric microbiota
and Helicobacter pylori infection in gastroesophageal reflux
disease[J]. Gut Pathog, 2022,14(1): 38.
[5] Di PILATO V, FRESCHI G, RINGRESSI M N, et al.
The esophageal microbiota in health and disease[J]. Ann N Y
Acad Sci, 2016,1381(1): 21-33.
[6] van der VELDE K J, IMHANN F, CHARBON B,
et al. MOLGENIS research: advanced bioinformatics data
software for non-bioinformaticians[J]. Bioinformatics,
2019,35(6): 1076-1078.
[7] KURILSHIKOV A, MEDINA-GOMEZ C,
BACIGALUPE R, et al. Large-scale association analyses
identify host factors influencing human gut microbiome
composition[J]. Nat Genet, 2021,53(2): 156-165.
[8] PALMER T M, LAWLOR D A, HARBORD R M, et
al. Using multiple genetic variants as instrumental variables
for modifiable risk factors[J]. Stat Methods Med Res,
2012,21(3): 223-242.
[9] KAMAT M A, BLACKSHAW J A, YOUNG R,
et al. PhenoScanner V2: an expanded tool for searching
human genotype-phenotype associations[J]. Bioinformatics,
2019,35(22): 4851-4853.
[10] BOWDEN J, DAVEY S G, BURGESS S.
Mendelian randomization with invalid instruments: effectestimation and bias detection through Egger regression[J]. Int
J Epidemiol, 2015,44(2): 512-525.
[11] GRECO M F, MINELLI C, SHEEHAN N A, et
al. Detecting pleiotropy in Mendelian randomisation studies
with summary data and a continuous outcome[J]. Stat Med,
2015,34(21): 2926-2940.
[12] BOWDEN J, DEL G M F, MINELLI C, et al.
Improving the accuracy of two-sample summary-data
Mendelian randomization: moving beyond the NOME
assumption[J]. Int J Epidemiol, 2019,48(3): 728-742.
[13] HEMANI G, ZHENG J, ELSWORTH B, et al.
The MR-Base platform supports systematic causal inference
across the human phenome[J]. Elife, 2018,7.
[14] GUPTA R S, SAWNANI S, ADEOLU M, et
al. Phylogenetic framework for the phylum Tenericutes
based on genome sequence data: proposal for the creation
of a new order Mycoplasmoidales ord. nov., containing
two new families Mycoplasmoidaceae fam. nov. and
Metamycoplasmataceae fam. nov. harbouring Eperythrozoon,
Ureaplasma and five novel genera[J]. Antonie Van
Leeuwenhoek, 2018,111(9): 1583-1630.
[15] ORELLANA E, DAVIES-SALA C, GUERRERO
L D, et al. Microbiome network analysis of co-occurrence
patterns in anaerobic co-digestion of sewage sludge and food
waste[J]. Water Sci Technol, 2019,79(10): 1956-1965.
[ 1 6 ] C H E R N O VA O A , C H E R N O V V M ,
MOUZYKANTOV A A, et al. Antimicrobial drug resistance
mechanisms among Mollicutes[J]. Int J Antimicrob Agents,
2021,57(2): 106253.
[17] BENEDETTI F, CURRELI S, ZELLA D.
Mycoplasmas-Host Interaction: Mechanisms of Inflammation
and Association with Cellular Transformation[J].
Microorganisms, 2020,8(9).
[18] WANG Y, HUANG J M, WANG S L, et al.
Genomic characterization of symbiotic mycoplasmas from
the stomach of deep-sea isopod bathynomus sp[J]. Environ
Microbiol, 2016,18(8): 2646-2659.
[19] ZHANG Y, ZHANG H, SUN X, et al. Nucleic acid
aptamer controls mycoplasma infection for inhibiting the
malignancy of esophageal squamous cell carcinoma[J]. Mol
Ther, 2022,30(6): 2224-2241.
[20] BONDE A, DALY S, KIRSTEN J, et al. Human
Gut Microbiota-associated Gastrointestinal Malignancies: A
Comprehensive Review[J]. Radiographics, 2021,41(4): 1103-
1122.
[21] HE L S, ZHANG P W, HUANG J M, et al. The
Enigmatic Genome of an Obligate Ancient Spiroplasma
Symbiont in a Hadal Holothurian[J]. Appl Environ Microbiol,
2018,84(1).
[22] WANG Y, HUANG J M, ZHOU Y L, et al.
Phylogenomics of expanding uncultured environmental
Tenericutes provides insights into their pathogenicity and
evolutionary relationship with Bacilli[J]. BMC Genomics,
2020,21(1): 408.
[23] DUAN J L, YIN J, REN W K, et al. Pyrrolidine
dithiocarbamate restores gastric damages and suppressive
autophagy induced by hydrogen peroxide[J]. Free Radic Res,
2015,49(2): 210-218.
[24] CHENG L, HARNETT K M, CAO W, et al.
Hydrogen peroxide reduces lower esophageal sphincter tone
in human esophagitis[J]. Gastroenterology, 2005,129(5):
1675-1685.
[25] SU X L, TIAN Q, ZHANG J, et al. Acetobacteroides
hydrogenigenes gen. nov., sp. nov., an anaerobic hydrogen_x0002_producing bacterium in the family Rikenellaceae isolated
from a reed swamp[J]. Int J Syst Evol Microbiol, 2014,64(Pt
9): 2986-2991.
[26] WANG H, WANG G, BANERJEE N, et al.
Aberrant Gut Microbiome Contributes to Intestinal Oxidative
Stress, Barrier Dysfunction, Inflammation and Systemic
Autoimmune Responses in MRL/lpr Mice[J]. Front Immunol,
2021,12: 651191.
[27] HOANG T, KIM M J, PARK J W, et al. Nutritionwide association study of microbiome diversity and
composition in colorectal cancer patients[J]. BMC Cancer,
2022,22(1): 656.
[28] GEURTS L, LAZAREVIC V, DERRIEN M, et al.
Altered gut microbiota and endocannabinoid system tone in
obese and diabetic leptin-resistant mice: impact on apelin
regulation in adipose tissue[J]. Front Microbiol, 2011,2: 149.
[29] KIM K A, GU W, LEE I A, et al. High fat dietinduced gut microbiota exacerbates inflammation and obesity
in mice via the TLR4 signaling pathway[J]. PLoS One,
2012,7(10): e47713.
[30] WEI T, JIA Y, XUE W, et al. Nutritional Effects
of the Enteral Nutritional Formula on Regulation of GutMicrobiota and Metabolic Level in Type 2 Diabetes Mellitus
Mice[J]. Diabetes Metab Syndr Obes, 2021,14: 1855-1869.
[31] YANG J, ZHANG Z, XIE Z, et al. Metformin
modulates microbiota-derived inosine and ameliorates
methamphetamine-induced anxiety and depression-like
withdrawal symptoms in mice[J]. Biomed Pharmacother,
2022,149: 112837.
[32] ZVOLENSKY M, JARDIN C, FARRIS S G,
et al. Gut interpretations: how difficulties in emotion
regulation may help explain the relation of visceral
sensitivity with depression and anxiety among young adults
with gastrointestinal symptoms[J]. Psychol Health Med,
2018,23(7): 840-845.
[33] TACK J, PANDOLFINO J E. Pathophysiology
of Gastroesophageal Reflux Disease[J]. Gastroenterology,
2018,154(2): 277-288.
[34] TETT A, PASOLLI E, MASETTI G, et al.
Prevotella diversity, niches and interactions with the human
host[J]. Nat Rev Microbiol, 2021,19(9): 585-599.
[35] LARSEN J M. The immune response to Prevotella
bacteria in chronic inflammatory disease[J]. Immunology,
2017,151(4): 363-374.
[36] WANG S, KUANG J, ZHANG H, et al. Bile AcidMicrobiome Interaction Promotes Gastric Carcinogenesis[J].
Adv Sci (Weinh), 2022,9(16): e2200263.
[37] FAN Y P, CHAKDER S, GAO F, et al. Inducible
and neuronal nitric oxide synthase involvement in
lipopolysaccharide-induced sphincteric dysfunction[J]. Am J
Physiol Gastrointest Liver Physiol, 2001,280(1): G32-G42.
[38] CALATAYUD S, GARCIA-ZARAGOZA E,
HERNANDEZ C, et al. Downregulation of nNOS and
synthesis of PGs associated with endotoxin-induced delay in
gastric emptying[J]. Am J Physiol Gastrointest Liver Physiol,
2002,283(6): G1360-G1367.
[39] LV J, GUO L, LIU J J, et al. Alteration of the
esophageal microbiota in Barrett's esophagus and esophageal
adenocarcinoma[J]. World J Gastroenterol, 2019,25(18):
2149-2161.
[40] HUANG Y F, ZHANG W M, WEI Z S, et al.
Causal relationships between gut microbiota and programmed
cell death protein 1/programmed cell death-ligand 1: A
bidirectional Mendelian randomization study[J]. Front
Immunol, 2023,14: 1136169.
[41] ADEWUYI E O, O'BRIEN E K, NYHOLT D R,
et al. A large-scale genome-wide cross-trait analysis reveals
shared genetic architecture between Alzheimer's disease and
gastrointestinal tract disorders[J]. Commun Biol, 2022,5(1):
691.
[42] MOROTOMI M, NAGAI F, WATANABE Y.
Description of Christensenella minuta gen. nov., sp. nov.,
isolated from human faeces, which forms a distinct branch in
the order Clostridiales, and proposal of Christensenellaceae
fam. nov[J]. Int J Syst Evol Microbiol, 2012,62(Pt 1): 144-
149.
[43] KONG F, HUA Y, ZENG B, et al. Gut microbiota
signatures of longevity[J]. Curr Biol, 2016,26(18):
R832-R833.
[44] KIM B S, CHOI C W, SHIN H, et al. Comparison of
the Gut Microbiota of Centenarians in Longevity Villages of
South Korea with Those of Other Age Groups[J]. J Microbiol
Biotechnol, 2019,29(3): 429-440.
[45] BIAGI E, FRANCESCHI C, RAMPELLI S, et
al. Gut Microbiota and Extreme Longevity[J]. Curr Biol,
2016,26(11): 1480-1485.
[46] GOODRICH J K, WATERS J L, POOLE A C,
et al. Human genetics shape the gut microbiome[J]. Cell,
2014,159(4): 789-799.
[47] KENNEDY N A, LAMB C A, BERRY S H, et al.
The Impact of NOD2 Variants on Fecal Microbiota in Crohn's
Disease and Controls Without Gastrointestinal Disease[J].
Inflamm Bowel Dis, 2018,24(3): 583-592.
[48] WIESEL P H, NORTON C, GLICKMAN S, et al.
Pathophysiology and management of bowel dysfunction in
multiple sclerosis[J]. Eur J Gastroenterol Hepatol, 2001,13(4):
441-448.
[49] LIM M Y, YOU H J, YOON H S, et al. The effect
of heritability and host genetics on the gut microbiota and
metabolic syndrome[J]. Gut, 2017,66(6): 1031-1038.
[50] FU J, BONDER M J, CENIT M C, et al. The Gut
Microbiome Contributes to a Substantial Proportion of the
Variation in Blood Lipids[J]. Circ Res, 2015,117(9): 817-824.
[51] ALIMI Y, AZAGURY D E. Gastroesophageal
Reflux Disease and the Patient with Obesity[J]. Gastroenterol
Clin North Am, 2021,50(4): 859-870.
[52] NOMURA M, TASHIRO N, WATANABE T, et
al. Association of symptoms of gastroesophageal reflux withmetabolic syndrome parameters in patients with endocrine
disease[J]. ISRN Gastroenterol, 2014,2014: 863206.
[53] HIIPPALA K, BARRETO G, BURRELLO C,
et al. Novel Odoribacter splanchnicus Strain and Its Outer
Membrane Vesicles Exert Immunoregulatory Effects in
vitro[J]. Front Microbiol, 2020,11: 575455.
[54] XIANG X W, WANG R, YAO L W, et al. AntiInflammatory Effects of Mytilus coruscus Polysaccharide on
RAW264.7 Cells and DSS-Induced Colitis in Mice[J]. Mar
Drugs, 2021,19(8).
[55] LIMA S F, GOGOKHIA L, VILADOMIU M, et
al. Transferable Immunoglobulin A-Coated Odoribacter
splanchnicus in Responders to Fecal Microbiota
Transplantation for Ulcerative Colitis Limits Colonic
Inflammation[J]. Gastroenterology, 2022,162(1): 166-178.
[56] XING C, WANG M, AJIBADE A A, et al.
Microbiota regulate innate immune signaling and protective
immunity against cancer[J]. Cell Host Microbe, 2021,29(6):
959-974.
[57] HUBER-RUANO I, CALVO E, MAYNERISPERXACHS J, et al. Orally administered Odoribacter laneus
improves glucose control and inflammatory profile in obese
mice by depleting circulating succinate[J]. Microbiome,
2022,10(1): 135.
[58] LI J, CHEN X L, SHAKER A, et al. Contribution of
immunomodulators to gastroesophageal reflux disease and its
complications: stromal cells, interleukin 4, and adiponectin[J].
Ann N Y Acad Sci, 2016,1380(1): 183-194.
[59] CREMA E, MONTEIRO I O, GOMES M G, et al.
Evaluation of cytokines (MIG, IFN-gamma, TNF-alpha, IL-
4, IL-5, and IL-10) during the different evolutive phases of
chagasic esophagopathy[J]. Clin Immunol, 2006,119(2): 213-
218.
[60] ROTHENBERG M E. Scientific journey to the first
FDA-approved drug for eosinophilic esophagitis[J]. J Allergy
Clin Immunol, 2022,150(6): 1325-1332.
[61] HIDALGO-CANTABRANA C, DELGADO S,
RUIZ L, et al. Bifidobacteria and Their Health-Promoting
Effects[J]. Microbiol Spectr, 2017,5(3).
[62] PICARD C, FIORAMONTI J, FRANCOIS A,
et al. Review article: bifidobacteria as probiotic agents
-- physiological effects and clinical benefits[J]. Aliment
Pharmacol Ther, 2005,22(6): 495-512.
[63] LIU Q, YU Z, TIAN F, et al. Surface components
and metabolites of probiotics for regulation of intestinal
epithelial barrier[J]. Microb Cell Fact, 2020,19(1): 23.
[64] BRUSILOVSKY M, BAO R, ROCHMAN M, et
al. Host-Microbiota Interactions in the Esophagus During
Homeostasis and Allergic Inflammation[J]. Gastroenterology,
2022,162(2): 521-534.
[65] NAGAOKA M, HASHIMOTO S, WATANABE T,
et al. Anti-ulcer effects of lactic acid bacteria and their cell
wall polysaccharides[J]. Biol Pharm Bull, 1994,17(8): 1012-
1017.
[66] CHASSARD C, DAPOIGNY M, SCOTT K P, et
al. Functional dysbiosis within the gut microbiota of patients
with constipated-irritable bowel syndrome[J]. Aliment
Pharmacol Ther, 2012,35(7): 828-838.
[67] DIMIDI E, CHRISTODOULIDES S, SCOTT
S M, et al. Mechanisms of Action of Probiotics and
the Gastrointestinal Microbiota on Gut Motility and
Constipation[J]. Adv Nutr, 2017,8(3): 484-494.
[ 6 8 ] V I VAT VA K I N B , M A H AY O S N O N D A ,
THEAMBOONLERS A, et al. Effect of a whey-predominant
starter formula containing LCPUFAs and oligosaccharides
(FOS/GOS) on gastrointestinal comfort in infants[J]. Asia Pac
J Clin Nutr, 2010,19(4): 473-480.
[69] NORTUNEN M, VAKIPARTA N, PORVARI K,
et al. Pathophysiology of reflux oesophagitis: role of Tolllike receptors 2 and 4 and Farnesoid X receptor[J]. Virchows
Arch, 2021,479(2): 285-293.
[70] YANG X, GAO X C, LIU J, et al. Effect of EPEC
endotoxin and bifidobacteria on intestinal barrier function
through modulation of toll-like receptor 2 and toll-like
receptor 4 expression in intestinal epithelial cell-18[J]. World
J Gastroenterol, 2017,23(26): 4744-4751.
Copyright © 2024 周嘉伟,李晓锋,李海量,杨 倜,黎 程 Publishing time:2024-06-30
This work is licensed under a Creative Commons Attribution 4.0 International License