成纤维细胞生长因子23与终末期肾病患者并发症相关
姒雨禾 ( 浙江中医药大学 )
谢海英* ( 绍兴市人民医院肾内科 )
官继超 ( 绍兴市人民医院肾内科 )
龚淑文 ( 绍兴市人民医院肾内科 )
沈水娟 ( 绍兴市人民医院肾内科 )
https://doi.org/10.37155/2661-4766-0605-60Abstract
成纤维细胞生长因子23(FGF23)是钙磷代谢的重要调节因子,主要由骨细胞和成骨细胞分泌。FGF23 在甲状旁腺轴中起重要作用,参与调控骨矿物质代谢,通过作用于肾组织中的受体复合物Klotho调节钙磷代谢,参与 终末期肾病患者矿物代谢和肾性骨病,也与血管钙化,心血管事件等有关,FGF23还与促红细胞生成素、铁代谢、炎 症存在双向作用,这使得FGF23在肾性贫血,感染等方面中也发挥重要作用,有望成为治疗新靶点。
Keywords
成纤维细胞生长因子23;终末期肾病;血管钙化;贫血;炎症Full Text
PDFReferences
[1]Isakova T, Wahl P, Vargas G S, et al. Fibroblast
growth factor 23 is elevated before parathyroid hormone
and phosphate in chronic kidney disease[J]. Kidney Int,
2011,79(12):1370-1378.
[2]Lu X, Hu M C. Klotho/FGF23 Axis in Chronic
Kidney Disease and Cardiovascular Disease[J]. Kidney Dis
(Basel), 2017,3(1):15-23.
[3]Gao S, Xu J, Zhang S, et al. Meta-Analysis of the
Association between Fibroblast Growth Factor 23 and
Mortality and Cardiovascular Events in Hemodialysis
Patients[J]. Blood Purif, 2019,47 Suppl 1(Suppl 1):24-30.
[4]Salam S, Gallagher O, Gossiel F, et al. Vascular
calcification relationship to vascular biomarkers and bone
metabolism in advanced chronic kidney disease[J]. Bone,
2021,143:115699.
[5]Fayed A, Elnokeety M M, Attia K, et al. Calcification
of abdominal aorta in patients recently starting hemodialysis:
A single-center experience from Egypt[J]. Saudi J Kidney Dis
Transpl, 2019,30(4):819-824.
[6]Memmos E, Papagianni A. New Insights into the
Role of FGF-23 and Klotho in Cardiovascular Disease in
Chronic Kidney Disease Patients[J]. Curr Vasc Pharmacol,
2021,19(1):55-62.
[7]Zhang H, Li G, Yu X, Yang J, Jiang A, Cheng H, Fu
J, Liang X, Liu J, Lou J,Wang M, Xing C, Zhang A, Zhang
M, Xiao X, Yu C, Wang R, Wang L, Chen Y, Guan T,Peng A,
Chen N, Hao C, Liu B, Wang S, Shen D, Jia Z, Liu Z; China
Dialysis Calcification Study Group. Progression of Vascular
Calcification and Clinical Outcomes in Patients Receiving
Maintenance Dialysis. JAMA Netw Open. 2023 May 1;6(5):
e2310909.
[8]Daryadel A, Bettoni C, Haider T, et al. Erythropoietin
stimulates fibroblast growth factor 23 (FGF23) in mice and
men[J]. Pflugers Arch, 2018,470(10):1569-1582.
[9]Hanudel M R, Eisenga M F, Rappaport M, et al.
Effects of erythropoietin on fibroblast growth factor 23 in mice
and humans[J]. Nephrol Dial Transplant, 2019,34(12):2057-
2065.
[10]Noonan M L, Clinkenbeard E L, Ni P, et al.
Erythropoietin and a hypoxia-inducible factor prolyl
hydroxylase inhibitor (HIF-PHDi) lowers FGF23 in a
model of chronic kidney disease (CKD)[J]. Physiol Rep,
2020,8(11):e14434.
[11]Durlacher-Betzer K, Hassan A, Levi R, et al.
Interleukin-6 contributes to the increase in fibroblast growthfactor 23 expression in acute and chronic kidney disease[J].
Kidney Int, 2018,94(2):315-325.
[12]Glosse P, Fajol A, Hirche F, et al. A high-fat diet
stimulates fibroblast growth factor 23 formation in mice
through TNFα upregulation[J]. Nutr Diabetes, 2018,8(1):36.
[13]Ishigami J, Taliercio J T, Feldman H I, et al.
Fibroblast Growth Factor 23 and Risk of Hospitalization with
Infection in Chronic Kidney Disease: The Chronic Renal
Insufficiency Cohort (CRIC) Study[J]. J Am Soc Nephrol,
2020,31(8):1836-1846.
growth factor 23 is elevated before parathyroid hormone
and phosphate in chronic kidney disease[J]. Kidney Int,
2011,79(12):1370-1378.
[2]Lu X, Hu M C. Klotho/FGF23 Axis in Chronic
Kidney Disease and Cardiovascular Disease[J]. Kidney Dis
(Basel), 2017,3(1):15-23.
[3]Gao S, Xu J, Zhang S, et al. Meta-Analysis of the
Association between Fibroblast Growth Factor 23 and
Mortality and Cardiovascular Events in Hemodialysis
Patients[J]. Blood Purif, 2019,47 Suppl 1(Suppl 1):24-30.
[4]Salam S, Gallagher O, Gossiel F, et al. Vascular
calcification relationship to vascular biomarkers and bone
metabolism in advanced chronic kidney disease[J]. Bone,
2021,143:115699.
[5]Fayed A, Elnokeety M M, Attia K, et al. Calcification
of abdominal aorta in patients recently starting hemodialysis:
A single-center experience from Egypt[J]. Saudi J Kidney Dis
Transpl, 2019,30(4):819-824.
[6]Memmos E, Papagianni A. New Insights into the
Role of FGF-23 and Klotho in Cardiovascular Disease in
Chronic Kidney Disease Patients[J]. Curr Vasc Pharmacol,
2021,19(1):55-62.
[7]Zhang H, Li G, Yu X, Yang J, Jiang A, Cheng H, Fu
J, Liang X, Liu J, Lou J,Wang M, Xing C, Zhang A, Zhang
M, Xiao X, Yu C, Wang R, Wang L, Chen Y, Guan T,Peng A,
Chen N, Hao C, Liu B, Wang S, Shen D, Jia Z, Liu Z; China
Dialysis Calcification Study Group. Progression of Vascular
Calcification and Clinical Outcomes in Patients Receiving
Maintenance Dialysis. JAMA Netw Open. 2023 May 1;6(5):
e2310909.
[8]Daryadel A, Bettoni C, Haider T, et al. Erythropoietin
stimulates fibroblast growth factor 23 (FGF23) in mice and
men[J]. Pflugers Arch, 2018,470(10):1569-1582.
[9]Hanudel M R, Eisenga M F, Rappaport M, et al.
Effects of erythropoietin on fibroblast growth factor 23 in mice
and humans[J]. Nephrol Dial Transplant, 2019,34(12):2057-
2065.
[10]Noonan M L, Clinkenbeard E L, Ni P, et al.
Erythropoietin and a hypoxia-inducible factor prolyl
hydroxylase inhibitor (HIF-PHDi) lowers FGF23 in a
model of chronic kidney disease (CKD)[J]. Physiol Rep,
2020,8(11):e14434.
[11]Durlacher-Betzer K, Hassan A, Levi R, et al.
Interleukin-6 contributes to the increase in fibroblast growthfactor 23 expression in acute and chronic kidney disease[J].
Kidney Int, 2018,94(2):315-325.
[12]Glosse P, Fajol A, Hirche F, et al. A high-fat diet
stimulates fibroblast growth factor 23 formation in mice
through TNFα upregulation[J]. Nutr Diabetes, 2018,8(1):36.
[13]Ishigami J, Taliercio J T, Feldman H I, et al.
Fibroblast Growth Factor 23 and Risk of Hospitalization with
Infection in Chronic Kidney Disease: The Chronic Renal
Insufficiency Cohort (CRIC) Study[J]. J Am Soc Nephrol,
2020,31(8):1836-1846.
Copyright © 2024 姒雨禾,谢海英*,官继超,龚淑文,沈水娟 Publishing time:2024-10-31
This work is licensed under a Creative Commons Attribution 4.0 International License