外泌体在动脉粥样硬化中的研究进展
沐嘉馨 ( 同济大学附属东方医院心血管内科 )
林 利 ( 同济大学附属东方医院心血管内科 )
https://doi.org/10.37155/2717-5693-0102-2Abstract
外泌体(Exosomes)是多种细胞在一定条件下分泌的纳米级膜颗粒,大小在30~100 n之间,可将信息从一个细胞传递到另一个细胞,参与细胞间通讯、物质转运和交换等生理过程,由此发挥调节细胞功能的作用。近年多项研究发现表明外泌体在动脉粥样硬化(atherosclerosis,AS)的发生发展中发挥着重要作用,因此其可能为AS的诊疗提供重要的切入点。本文就外泌体在AS发展过程中的生物标记物作用和治疗潜力进行综述。
Keywords
外泌体; 动脉粥样硬化; miRNA; 生物标记物; 治疗Full Text
PDFReferences
[1] Costantino S,Paneni F,Cosentino F.Ageing, metabolism and cardiovascular disease[J].J Physiol-London, 2016,594(8):2061-2073.
[2] Lu MM,Yuan SF,Li SC.The Exosome-Derived Biomarker in Atherosclerosis and Its Clinical Application[J].J Cardiovasc Transl, 2019,12(1):68-74.
[3] Jung JH,Fu XB,Yang PC.Exosomes Generated From iPSC-Derivatives New Direction for Stem Cell Therapy in Human Heart Diseases[J].Circ Res, 2017,120(2):407-417.
[4] Lai R C, Arslan F, Lee M M, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury [J]. Stem Cell Res, 2010,4(3):214-222.
[5] Hulsmans M,Holvoet P.MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease[J].Cardiovasc Res, 2013,100(1):7-18.
[6] He CJ,Zheng S,Luo Y.Exosome Theranostics: Biology and Translational Medicine[J].Theranostics, 2018,8(1):237-255.
[7] Kowal J,Tkach M,Thery C.Biogenesis and secretion of exosomes[J].Curr Opin Cell Biol, 2014,29:116-125.
[8] Hessvik NP,Llorente A.Current knowledge on exosome biogenesis and release[J].Cell Mol Life Sci, 2018,75(2):193-208.
[9] Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor [J]. Cell, 1983, 33(3): 967-978.
[10] Thery C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function [J]. Nature Reviews Immunology, 2002,2(8):569-579.
[11] Zhao W, Zheng XL, Zhao SP. Exosome and its roles in cardiovascular diseases [J]. Heart Fail Rev, 2015,20(3):337-348.
[12] Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials [J]. Bba-Gen Subjects, 2012,1820(7):940-948.
[13] 魏晓晶,胡晓.外泌体功能与临床应用研究进展[J].中国医药导报, 2018,15(34):45-48.
[14] Li X, Liu LY, Yang J. Exosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation [J]. Ebiomedicine, 2016,8:72-82.
[15] Syn N, Wang L, Sethi G. Exosome-Mediated Metastasis: From Epithelial-Mesenchymal Transition to Escape from Immunosurveillance [J]. Trends Pharmacol Sci, 2016,37(7):606-617.
[16] Yang HO, Zhang HY, Ge SH. Exosome-Derived miR-130a Activates Angiogenesis in Gastric Cancer by Targeting C-MYB in Vascular Endothelial Cells [J]. Mol Ther, 2018,26(10):2466-2475.
[17] Li P, Kaslan M, Lee SH. Progress in Exosome Isolation Techniques [J]. Theranostics, 2017,7(3):789-804.
[18] Yang XX, Sun C, Wang L. New insight into isolation, identification techniques and medical applications of exosomes [J]. J Control Release, 2019, 308:119-129.
[19] 郝海宁,仝令君,张兰威,易华西. 乳源外泌体的提取及鉴定方法研究进展[J].食品安全质量检测学报, 2019,10(14):4582-4588.
[20] 袁近松,石蓓.外泌体microRNAs作为心血管疾病生物标志物的研究进展[J].中国老年学杂志, 2019,34(3):754-757.
[21] Wang Z, Zhang J, Zhang S. MiR30e and miR92a are related to atherosclerosis by targeting ABCA1 [J]. Mol Med Rep, 2019,19(4):3298-3304.
[22] Escate R, Padro T, Suades R. High miR-133a levels in the circulation anticipates presentation of clinical events in familial hypercholesterolemia patients [J]. Cardiovasc Res(in press), 2020.
[23] Cheng HS, Besla R, Li A. Paradoxical Suppression of Atherosclerosis in the Absence of microRNA-146a [J]. Circ Res, 2017,121(4):354-367.
[24] Raju S, Fish J E, Howe K L. MicroRNAs as sentinels and protagonists of carotid artery thromboembolism [J]. Clin Sci (Lond), 2020,134(2):169-192.
[25] Chen L, Yang W, Guo Y, et al. Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis [J]. Plos One, 2017, 12(9): e0185406.
[26] Zheng B, Yin W N, Suzuki T, et al. Exosome-Mediated miR-155 Transfer from Smooth Muscle Cells to Endothelial Cells Induces Endothelial Injury and Promotes Atherosclerosis [J]. Mol Ther, 2017, 25(6): 1279-1294.
[27] Vacante F, Denby L, Sluimer J C, et al. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease [J]. Vascul Pharmacol, 2019, 112:24-30.
[28] Bellin G, Gardin C, Ferroni L, et al. Exosome in Cardiovascular Diseases: A Complex World Full of Hope [J]. Cells-Basel, 2019, 8(2):166.
[29] Lombardo G, Dentelli P, Togliatto G, et al. Activated Stat5 trafficking Via Endothelial Cell-derived Extracellular Vesicles Controls IL-3 Pro-angiogenic Paracrine Action [J]. Sci Rep-Uk, 2016, 6:25689.
[30] van Balkom BWM, de Jong OG, Smits M, et al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells [J]. Blood, 2013, 121(19): 3997-4006.
[31] Hergenreider E, Heydt S, Treguer K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs [J]. Nat Cell Biol, 2012, 14(3): 249-256.
[32] He S, Wu C, Xiao J, et al. Endothelial extracellular vesicles modulate the macrophage phenotype: Potential implications in atherosclerosis [J]. Scand J Immunol, 2018, 87(4):e12648 .
[33] Ong SG, Lee WH, Huang M, et al. Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer [J]. Circulation, 2014, 130: S60-S69.
[34] Zheng B, Yin WN, Suzuki T, et al. Exosome-Mediated miR-155 Transfer from Smooth Muscle Cells to Endothelial Cells Induces Endothelial Injury and Promotes Atherosclerosis [J]. Mol Ther, 2017, 25(6): 1279-1294.
[35] Kapustin AN, Shanahan CM. Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation [J]. J Physiol, 2016, 594(11): 2905-2914.
[36] Gidlof O, van der Brug M, Ohman J, et al. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression [J]. Blood, 2013, 121(19): 3908-3917, S1-S26.
[37] Li J, Tan M, Xiang Q, et al. Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response [J]. Thromb Res, 2017, 154:96-105.
[38] Yao Y, Sun W, Sun Q, et al. Platelet-Derived Exosomal MicroRNA-25-3p Inhibits Coronary Vascular Endothelial Cell Inflammation Through Adam10 via the NF-kappaB Signaling Pathway in ApoE(-/-) Mice [J]. Front Immunol, 2019, 10:2205.
[39] Sun Y, Liu XL, Zhang D, et al. Platelet-Derived Exosomes Affect the Proliferation and Migration of Human Umbilical Vein Endothelial Cells Via miR-126 [J]. Curr Vasc Pharmacol, 2019, 17(4): 379-387.
[40] Li X, Li X, Lin J, et al. Exosomes Derived From Low-Intensity Pulsed Ultrasound-Treated Dendritic Cells Suppress Tumor Necrosis Factor-Induced Endothelial Inflammation [J]. J Ultrasound Med, 2019, 38(8): 2081-2091.
[41] Alexander M, Hu R, Runtsch MC, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin [J]. Nat Commun, 2015, 6:7321.
[42] Wu R, Gao W, Yao K, et al. Roles of Exosomes Derived From Immune Cells in Cardiovascular Diseases [J]. Front Immunol, 2019, 10:648.
[43] Liu Y, Li C, Wu H, et al. Paeonol Attenuated Inflammatory Response of Endothelial Cells via Stimulating Monocytes-Derived Exosomal MicroRNA-223 [J]. Front Pharmacol, 2018, 9:1105.
[44] Moghaddam AS, Afshari JT, Esmaeili SA, et al. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease [J]. Atherosclerosis, 2019, 285:1-9.
[45] Pan Q, Wang Y, Lan Q, et al. Exosomes Derived from Mesenchymal Stem Cells Ameliorate Hypoxia/Reoxygenation-Injured ECs via Transferring MicroRNA-126 [J]. Stem Cells Int, 2019, 2019:2831756.
[46] Li J, Xue H, Li T, et al. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE(-/-) mice via miR-let7 mediated infiltration and polarization of M2 macrophage [J]. Biochem Biophys Res Commun, 2019, 510(4): 565-572.
[2] Lu MM,Yuan SF,Li SC.The Exosome-Derived Biomarker in Atherosclerosis and Its Clinical Application[J].J Cardiovasc Transl, 2019,12(1):68-74.
[3] Jung JH,Fu XB,Yang PC.Exosomes Generated From iPSC-Derivatives New Direction for Stem Cell Therapy in Human Heart Diseases[J].Circ Res, 2017,120(2):407-417.
[4] Lai R C, Arslan F, Lee M M, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury [J]. Stem Cell Res, 2010,4(3):214-222.
[5] Hulsmans M,Holvoet P.MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease[J].Cardiovasc Res, 2013,100(1):7-18.
[6] He CJ,Zheng S,Luo Y.Exosome Theranostics: Biology and Translational Medicine[J].Theranostics, 2018,8(1):237-255.
[7] Kowal J,Tkach M,Thery C.Biogenesis and secretion of exosomes[J].Curr Opin Cell Biol, 2014,29:116-125.
[8] Hessvik NP,Llorente A.Current knowledge on exosome biogenesis and release[J].Cell Mol Life Sci, 2018,75(2):193-208.
[9] Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor [J]. Cell, 1983, 33(3): 967-978.
[10] Thery C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function [J]. Nature Reviews Immunology, 2002,2(8):569-579.
[11] Zhao W, Zheng XL, Zhao SP. Exosome and its roles in cardiovascular diseases [J]. Heart Fail Rev, 2015,20(3):337-348.
[12] Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials [J]. Bba-Gen Subjects, 2012,1820(7):940-948.
[13] 魏晓晶,胡晓.外泌体功能与临床应用研究进展[J].中国医药导报, 2018,15(34):45-48.
[14] Li X, Liu LY, Yang J. Exosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation [J]. Ebiomedicine, 2016,8:72-82.
[15] Syn N, Wang L, Sethi G. Exosome-Mediated Metastasis: From Epithelial-Mesenchymal Transition to Escape from Immunosurveillance [J]. Trends Pharmacol Sci, 2016,37(7):606-617.
[16] Yang HO, Zhang HY, Ge SH. Exosome-Derived miR-130a Activates Angiogenesis in Gastric Cancer by Targeting C-MYB in Vascular Endothelial Cells [J]. Mol Ther, 2018,26(10):2466-2475.
[17] Li P, Kaslan M, Lee SH. Progress in Exosome Isolation Techniques [J]. Theranostics, 2017,7(3):789-804.
[18] Yang XX, Sun C, Wang L. New insight into isolation, identification techniques and medical applications of exosomes [J]. J Control Release, 2019, 308:119-129.
[19] 郝海宁,仝令君,张兰威,易华西. 乳源外泌体的提取及鉴定方法研究进展[J].食品安全质量检测学报, 2019,10(14):4582-4588.
[20] 袁近松,石蓓.外泌体microRNAs作为心血管疾病生物标志物的研究进展[J].中国老年学杂志, 2019,34(3):754-757.
[21] Wang Z, Zhang J, Zhang S. MiR30e and miR92a are related to atherosclerosis by targeting ABCA1 [J]. Mol Med Rep, 2019,19(4):3298-3304.
[22] Escate R, Padro T, Suades R. High miR-133a levels in the circulation anticipates presentation of clinical events in familial hypercholesterolemia patients [J]. Cardiovasc Res(in press), 2020.
[23] Cheng HS, Besla R, Li A. Paradoxical Suppression of Atherosclerosis in the Absence of microRNA-146a [J]. Circ Res, 2017,121(4):354-367.
[24] Raju S, Fish J E, Howe K L. MicroRNAs as sentinels and protagonists of carotid artery thromboembolism [J]. Clin Sci (Lond), 2020,134(2):169-192.
[25] Chen L, Yang W, Guo Y, et al. Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis [J]. Plos One, 2017, 12(9): e0185406.
[26] Zheng B, Yin W N, Suzuki T, et al. Exosome-Mediated miR-155 Transfer from Smooth Muscle Cells to Endothelial Cells Induces Endothelial Injury and Promotes Atherosclerosis [J]. Mol Ther, 2017, 25(6): 1279-1294.
[27] Vacante F, Denby L, Sluimer J C, et al. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease [J]. Vascul Pharmacol, 2019, 112:24-30.
[28] Bellin G, Gardin C, Ferroni L, et al. Exosome in Cardiovascular Diseases: A Complex World Full of Hope [J]. Cells-Basel, 2019, 8(2):166.
[29] Lombardo G, Dentelli P, Togliatto G, et al. Activated Stat5 trafficking Via Endothelial Cell-derived Extracellular Vesicles Controls IL-3 Pro-angiogenic Paracrine Action [J]. Sci Rep-Uk, 2016, 6:25689.
[30] van Balkom BWM, de Jong OG, Smits M, et al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells [J]. Blood, 2013, 121(19): 3997-4006.
[31] Hergenreider E, Heydt S, Treguer K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs [J]. Nat Cell Biol, 2012, 14(3): 249-256.
[32] He S, Wu C, Xiao J, et al. Endothelial extracellular vesicles modulate the macrophage phenotype: Potential implications in atherosclerosis [J]. Scand J Immunol, 2018, 87(4):e12648 .
[33] Ong SG, Lee WH, Huang M, et al. Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer [J]. Circulation, 2014, 130: S60-S69.
[34] Zheng B, Yin WN, Suzuki T, et al. Exosome-Mediated miR-155 Transfer from Smooth Muscle Cells to Endothelial Cells Induces Endothelial Injury and Promotes Atherosclerosis [J]. Mol Ther, 2017, 25(6): 1279-1294.
[35] Kapustin AN, Shanahan CM. Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation [J]. J Physiol, 2016, 594(11): 2905-2914.
[36] Gidlof O, van der Brug M, Ohman J, et al. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression [J]. Blood, 2013, 121(19): 3908-3917, S1-S26.
[37] Li J, Tan M, Xiang Q, et al. Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response [J]. Thromb Res, 2017, 154:96-105.
[38] Yao Y, Sun W, Sun Q, et al. Platelet-Derived Exosomal MicroRNA-25-3p Inhibits Coronary Vascular Endothelial Cell Inflammation Through Adam10 via the NF-kappaB Signaling Pathway in ApoE(-/-) Mice [J]. Front Immunol, 2019, 10:2205.
[39] Sun Y, Liu XL, Zhang D, et al. Platelet-Derived Exosomes Affect the Proliferation and Migration of Human Umbilical Vein Endothelial Cells Via miR-126 [J]. Curr Vasc Pharmacol, 2019, 17(4): 379-387.
[40] Li X, Li X, Lin J, et al. Exosomes Derived From Low-Intensity Pulsed Ultrasound-Treated Dendritic Cells Suppress Tumor Necrosis Factor-Induced Endothelial Inflammation [J]. J Ultrasound Med, 2019, 38(8): 2081-2091.
[41] Alexander M, Hu R, Runtsch MC, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin [J]. Nat Commun, 2015, 6:7321.
[42] Wu R, Gao W, Yao K, et al. Roles of Exosomes Derived From Immune Cells in Cardiovascular Diseases [J]. Front Immunol, 2019, 10:648.
[43] Liu Y, Li C, Wu H, et al. Paeonol Attenuated Inflammatory Response of Endothelial Cells via Stimulating Monocytes-Derived Exosomal MicroRNA-223 [J]. Front Pharmacol, 2018, 9:1105.
[44] Moghaddam AS, Afshari JT, Esmaeili SA, et al. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease [J]. Atherosclerosis, 2019, 285:1-9.
[45] Pan Q, Wang Y, Lan Q, et al. Exosomes Derived from Mesenchymal Stem Cells Ameliorate Hypoxia/Reoxygenation-Injured ECs via Transferring MicroRNA-126 [J]. Stem Cells Int, 2019, 2019:2831756.
[46] Li J, Xue H, Li T, et al. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE(-/-) mice via miR-let7 mediated infiltration and polarization of M2 macrophage [J]. Biochem Biophys Res Commun, 2019, 510(4): 565-572.
Copyright © 2020 沐嘉馨, 林 利 Publishing time:2020-06-24
This work is licensed under a Creative Commons Attribution 4.0 International License