A Journey into the Determination of Polyaniline Molecular Weight

Claudia L. Bianchi ( Department of Chemistry, University of Milan, via C. Golgi 19, 20133, Milan, Italy. )

Ridha Djellabi ( Department of Chemistry, University of Milan, via C. Golgi 19, 20133, Milan, Italy. )

Ermelinda Falletta ( Department of Chemistry, University of Milan, via C. Golgi 19, 20133, Milan, Italy. )

https://doi.org/10.37155/2717-526X-0301-2

Abstract

Over the last decades, the construction and design of conducting polymer-based materials have received a huge attention due to their special physico-chemical characteristics making them very useful and alternative materials in various fields. Among intrinsically conducting polymers, polyaniline (PANI) has been widely used and a pool of scientific research has been done to improve its properties and/or to combine it with other materials to get multifunction materials with enhanced efficiency. However, the scarce information is available to date on its molecular weight (Mw) limits obtaining structural information. In fact, owing to the poor solubility of the material the most part of the results concerns dimeric and oligomeric species, whereas a complete characterization of the longest chains is still far away.

Since the synthetic strategies used to produce PANI critically affect its properties and chemical-physical characteristics, included Mw, the present work summarizes the most common methods applied for PANI synthesis and the different analytical approaches used to determine the Mw of the polymer and of its oligomers, in order to stimulate further investigation that can contribute to widen the information on this unique polymer.

Keywords

Polyaniline; Molecular weight; Structural information; Analytical techniques; Oligomers

Full Text

PDF

References

[1]Lee D J, Heo D K, Yun C, Kim Y H, Kang M H. Solution-Processed Semitransparent Inverted Organic Solar Cells from a Transparent Conductive Polymer Electrode. ECS J Solid State Sci Technol 2019, 8(2), Q32-Q37.
[2]Moiz S A, Alahmadi A N M, Karimov Kh S. Improved organic solar cell by incorporating silver nanoparticles embedded polyaniline as buffer layer. Solid State Electron 2020, 163, 107658(1-8).
[3]Falletta E, Costa P, Della Pina C, Lanceros-Mendez S. Development of high sensitive polyaniline based piezoresistive films by conventional and green chemistry approaches. Sens Actuators A 2014, 220, 13-21.
[4]Della Pina C, Zappa E, Busca G, Sironi A, Falletta E. Electromechanical properties of polyanilines prepared by two different approaches and their applicability in force measurements. Sens Actuators B 2014, 201, 395-401.
[5]Della Pina C, Zappa E, Busca G, Sironi A, Falletta E. Annealing effect on electromechanical behaviour of polyanilines organic acids-doped. Sens Actuators A 2016, 252, 59-66.
[6]Wang Y, Liu A, Han Y, Li T. Sensors based on conductive polymers and their composites: a review. Polym Int 2020, 69, 7-17.
[7]Della Pina C, De Gregorio M A, Clerici L, Dellavedova P, Falletta E. Polyaniline (PANI): an innovative support for sampling and removal of VOCs in air matrices. J Hazard Mater 2018, 344, 1-8.
[8]Cionti C, Della Pina C, Meroni D, Falletta E, Ardizzone S. Triply green polyaniline: UV irradiation-induced synthesis of a highly porous PANI/TiO2 composite and its application in dye removal. Chem Commun 2018, 54, 10702-10705.
[9]Della Pina C, De Gregorio M A, Dellavedova P, Falletta E. Polyanilines as new sorbents for hydrocarbons removal from aqueous solutions. Materials 2020, 13, 2161(1-10).
[10]Cionti C, Della Pina C, Meroni D, Falletta E, Ardizzone S. Photocatalytic and Oxidative Synthetic Pathways for Highly Efficient PANI-TiO2 Nanocomposites as Organic and Inorganic Pollutant Sorbents. Nanomaterials 2020, 10, 441(1-21).
[11]Stejskal J, Kratochvíl P, Gaspodinova N, Terlemezyan L, Mokreva P. Polyaniline dispersions: preparation of spherical particles and their light-scattering characterization. Polymer 1992, 33(22), 4857-4858.
[12]Kolla H S, Surwade S P, Zhang X, MacDiarmid A G, Manohar S K. Absolute Molecular Weight of Polyaniline. J Am Chem Soc. 2005, 127, 16770-16771.
[13]Ogawa T, Goto F, Makoto M, Araga T. A novel and simple method for producing field-desorption mass spectra of electrochemically polymerized insoluble conducting polymers. Rapid commun Mass Spectrom 1988, 2(11), 241-243.
[14]Chan H S O, Ang S G, Ho P K H. Static secondary ion mass spectrometry (SIMS) of polyanilines: a preliminary study. Synth Met 1990, 36, 103-110.
[15]Sauerland V, Schindler R N. A mass spectrometric investigation of polyaniline using photoionization. Synth Met 1996, 82, 193-199.
[16]Dolan A R, Wood T D. Analysis of Polyaniline Oligomers by Laser Desorption Ionization and Solventless MALDI, J Am Soc Mass Spectrom 2004, 15, 893-899.
[17]Deng H, Van Berkel G J. Electrochemical Polymerization of Aniline Investigated Using On-Line Electrochemistry/Electrospray Mass Spectrometry. Anal Chem 1999, 71, 4284-4293.
[18]Borrós Gómez S, Folch I E. Pyrolysis-HRGC-MS study of polyaniline. JAAP 2000, 55, 247-253.
[19]Folch I, Borrós S, Amabilino D B, Veciana J. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of some conducting polymers. J Mass Spectrom 2000, 35, 550-555.
[20]Dolan A R, Wood T D. Synthesis and characterization of low molecular weight oligomers of soluble polyaniline by electrospray ionization mass spectrometry. Synth Met 2004, 143, 243-250.
[21]Hacaloglu J, Argin E, Kücükyavuz Z. Characterization of Polyaniline via Pyrolysis Mass Spectrometry. J Appl Polym Sci 2008, 108, 400-405.
[22]Adams P N, Apperley D C, Monkman A P. A comparison of the molecular weights of polyaniline samples obtained from gel permeation chromatography and solid state 15N n.m.r. spectroscopy. Polymer 1993, 34(2), 328-332.
[23]Alavi S, Thomas S, Sandeep K P, Kalarikkal N, Varghese J, Yaragalla S. Polymers for packaging applications. CRC Press; 2014. ISBN 9781926895772
[24]Stejskal J, Trchová M, Bober P, Humpolíček P, Kašpárková V, Sapurina I, Shishov M, Varga M. Conducting Polymers: Polyaniline, In book: Encyclopedia of Polymer Science and Technology, Copyright © 2015 John Wiley & Sons, Inc. https://doi.org/10.1002/0471440264.pst640
[25]MacDiarmid A G. Polyaniline and polypyrrole: where are we headed? Synth Met 1997, 84, 27-34.
[26]Kitani A, Yani J, Kunai A, Sasaki K. A conducting polymer derived from para-aminodiphenylamine. J Electroanal Chem 1987, 221, 69-82.
[27]Geniès E M, Penneau J F, Lapkowski M, Boyle A. Electropolymerization reaction mechanism of para-aminodiphenylamine. J Electroanal Chem 1989, 269, 63-75.
[28]De Gennes P G. Solutions de polymeres conducteurs. Lois d’schelles. C. R. Acad. Sci., 302, 1986, 1-5.
[29]Yusoff II, Rohani R, Mohammad A W. Investigation of the formation characteristics of polyaniline and its application in forming free-standing pressure filtration membranes. J Polym Res 2016, 23, 177(1-13).
[30]Stejskal J. Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure Appl Chem 2002, 74(5), 857–867.
[31]Turemisa M, Zappi D, Giardi M, Basile G, Ramanaviciene A, Kapralovs A, Ramanavicius A, Viter R. ZnO/polyaniline composite based photoluminescence sensor for the determination of acetic acid vapour. Talanta, 2020, 211, 120658(1-9).
[32]Yu L T, Borredon M S, Jozefowicz M, Belorgey G, Buvet R. Étude éxpérimentale de la Conductivité en Courant continu des Composés macromoléculaires. J Polym Sci Part C-Polym Symp, 1967, 16(5), 2931-2942.
[33]Sun Z, Geng Y, Li J, Jing X, Wang F. Chemical polymerization of aniline with hydrogen peroxide as oxidant. Synth Met, 1997, 84, 99-100.
[34]Adams P N, Laughlin P J, Monkman A P, Kenwright A M. Low temperature synthesis of high molecular weight polyaniline. Polymer, 1996, 37(15), 3411-3417.
[35]Yue J, Wang Z H, Cromack K R, Epstein A J, MacDiarmid A G. Effect of Sulfonic Acid Group on Polyaniline Backbone. J Am Chem Soc 1991, 13, 2665-2671
[36]Gicevicius M, Kucinski J, Ramanavicienea A, Ramanavicius A. Tuning the optical pH sensing properties of polyaniline-based layer by electrochemical copolymerization of aniline with o-phenylenediamine. Dyes and Pigments 2019, 170, 107457(1-5).
[37]Domínguez-Aragón A, Hernández-Escobar C A, Vega-Rios A Zaragoza-Contreras A. Poly(diphenylamine-co-aniline) copolymers for supercapacitor electrodes. J Mater Sci Mater Electron 2018, 29, 15329–15338.
[38]Huang W –S, Humphrey B D, MacDiarmid A G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 1 1986,82, 2385-2400.
[39]Popov A, Brasiunas B, Mikoliunaite L, Bagdziunas G, Ramanavicius A, Ramanaviciene A. Comparative study of polyaniline (PANI), poly(3,4-ethylenedioxythiophene) (PEDOT) and PANI-PEDOT films electrochemically deposited on transparent indium thin oxide based electrodes. Polymer 2019, 172, 133–141.
[40]Gicevicius M, Cechanaviciute I A, Ramanavicius A. Electrochromic Textile Composites Based on Polyaniline-Coated Metallized Conductive Fabrics. J Electrochem Soc 2020, 167, 155515(1-7).
[41]Dao L H, Leclerc M, Guay J, Chevalie J W. Synthesis and characterization of substituted poly(anilines). Synth Met 1989, 29(1), 377-382.
[42]Mattoso L H C, Faria R M, Bulhões L O S, MacDiarmid A G. Influence of electropolymerization conditions on the molecular weight of polyaniline. Polymer 1994, 35(23), 5104-5108.
[43]German N, Popov A, Ramanaviciene A, Ramanavicius A. Evaluation of enzymatic formation of polyaniline nanoparticles. Polymer 2017, 115, 211-216.
[44]German N, Ramanaviciene A, Ramanavicius A. Formation of Polyaniline and Polypyrrole Nanocomposites with Embedded Glucose Oxidase and Gold Nanoparticles. Polymers 2019, 11, 377(1-13).
[45]Kausaite A, Ramanaviciene A, Ramanavicius A. Polyaniline synthesis catalysed by glucose oxidase. Polymer 2009, 50, 1846-1851.
[46]Aizawa M, Wang L, Shinohara H, Ikariyama Y. Enzymatic synthesis of polyaniline film using a copper-containing oxidoreductase: bilirubin oxidase. J Biotechnol 1990, 14(3-4), 301-309.
[47]Hsu C -H, Peacock P M, Flippen R B, Yue J, Epstein A J. The molecular weight of sulfonic acid ring-substituted polyaniline by laser light scattering. Synth Met 1993, 60, 223-225.
[48]Manohar S K, Macdiarmid A G, Epstein A J. Polyaniline: Pernigranile, an isolable intermediate in teh conventional chemical synthesis of emeraldine. Synth Met 1991, 41, 711-714.
[49]Richter A F, Ray A, Ramanathan K V, Manohar S K, Furst G T, Opella S J, MacDiarmid A G. 15N NMR of polyaniline. Synth Met 1989, 29, 243-249.
[50]Della Pina C, Falletta E. Polyaniline: From Tradition to Innovation. Nova Science Publishers, Inc., New York (USA), 2015, 1-98. ISBN 978-1-63463-273-7
[51]MacDiarmid A G, Chiang J C, Richter A F, Somasiri N L D, Epstein A J. L. ALcer (Ed.), Conducting Polymers, Polyaniline: Synthesis and Characterization of the Emeraldine Oxidation State by Elemental Analysis, Reidel, Dordrecht, 1987, 105-120.
[52]Stafström S, Brédas J L, Epstein A J, Woo H S, Tanner D B, Huang W S, MacDiarmid A G. Polaron lattice in highly conducting polyaniline: Theoretical and optical studies. Phys Rev Lett. 1987, 59, 1464-1467.
[53]Baughman R H, Wolf J F, Eckhardt H, Shacklette L W. The structure of a novel polymeric metal: Acceptor-doped polyaniline. Synth. Met. 1988, 25(2), 121-137.
[54]Menardo C, Nechtschein M, Rousseau A, Travers J P, Hany P. Investigation on the structure of polyaniline: 13C n.m.r. and titration studies. Synth Met 1988, 25(4), 311-322.
Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Processes 1987, 78, 53-68.

Copyright © 2021 Ermelinda Falletta Creative Commons License Publishing time:2021-06-30
This work is licensed under a Creative Commons Attribution 4.0 International License