Machine Learning for Next-generation Printed Technologies

Litty Varghese Thekkekara ( Functional Material and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia )

Shamini P. Baby ( School of Computer Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia )

Jeffery Chan ( School of Computer Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia )

Ivan Cole ( School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia )

https://doi.org/10.37155/2717-526X-0301-5

Abstract

Modern science advances towards the development of lightweight wearable and portable applications for the promotion of human-machine interfaces. Among them, the most beneficial ones include the technologies for healthcare, telecommunications, and energy resources. Recent developments in the additive manufacturing otherwise 3D printing sector are promising for largescale applications. It promotes cost-effective production of technologies like sensors, lab on chips, solar cells, and energy storage. However, these applications' efficiency is lower to technologies fabricated using other methods like chemical approaches due to the non-optimized parameters involved in the fabrication and characterization phases. Machine learning on the other hand expands its science and engineering capabilities. It has a broader opportunity to support 3D printing to develop the potentials and efficiency through effective prediction methods for printing methods and design aspects. In this review, we discuss the use of machine learning prediction algorithms for technologies using 3D printing.

Keywords

Additive manufacturing; 3D printing; Printed technologies; Artificial intelligence; Machine learning; Data analysis

Full Text

PDF

References

[1] I. Gibson, D. W. Rosen, B. Stucker, Additive manufacturing technologies, Springer, 2014.
[2] a) H. Lipson, M. Kurman, Fabricated: The new world of 3D printing, John Wiley & Sons, 2013; b) B. Berman, Business horizons 2012, 55, 155; c) L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, M. Malinauskas, Optics express 2019, 27, 15205.
[3] a) T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, D. Hui, Composites Part B: Engineering 2018, 143, 172; b) S. Maruo, O. Nakamura, S. Kawata, Optics letters 1997, 22, 132; c) S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Nature 2001, 412, 697.
[4] a) J. Chang, T. Ge, E. Sanchez-Sinencio, presented at 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS) 2012; b) A. Vanderploeg, S.-E. Lee, M. Mamp, International Journal of Fashion Design, Technology and Education 2017, 10, 170; c) S. Khan, L. Lorenzelli, R. S. Dahiya, IEEE Sensors Journal 2014, 15, 3164; d) Q. Yan, H. Dong, J. Su, J. Han, B. Song, Q. Wei, Y. Shi, Engineering 2018, 4, 729; e) C. Schubert, M. C. Van Langeveld, L. A. Donoso, British Journal of Ophthalmology 2014, 98, 159; f) J. A. Lewis, B. Y. Ahn, Nature 2015, 518, 42; g) S.-Y. Wu, C. Yang, W. Hsu, L. Lin, Microsystems & Nanoengineering 2015, 1, 1; h) Y. L. Kong, I. A. Tamargo, H. Kim, B. N. Johnson, M. K. Gupta, T.-W. Koh, H.-A. Chin, D. A. Steingart, B. P. Rand, M. C. McAlpine, Nano letters 2014, 14, 7017; i) G. Comina, A. Suska, D. Filippini, Lab on a Chip 2014, 14, 424; j) L. V. Thekkekara, M. Gu, Scientific reports 2017, 7, 45585; k) Y. Liu, T. T. Larsen-Olsen, X. Zhao, B. Andreasen, R. R. Søndergaard, M. Helgesen, K. Norrman, M. Jørgensen, F. C. Krebs, X. Zhan, Solar energy materials and solar cells 2013, 112, 157; l) A. Ghilan, A. P. Chiriac, L. E. Nita, A. G. Rusu, I. Neamtu, V. M. Chiriac, Journal of Polymers and the Environment 2020, 1.
[5] a) A. Mitchell, U. Lafont, M. Hołyńska, C. Semprimoschnig, Additive Manufacturing 2018, 24, 606; b) D. Bourell, J. P. Kruth, M. Leu, G. Levy, D. Rosen, A. M. Beese, A. Clare, CIRP Annals 2017, 66, 659.
[6] a) B. Ahuja, M. Karg, M. Schmidt, presented at Laser 3d manufacturing II 2015; b) S. Yang, Y. F. Zhao, The International Journal of Advanced Manufacturing Technology 2015, 80, 327; c) N. Kouraytem, X. Li, W. Tan, B. Kappes, A. Spear, Journal of Physics: Materials 2020.
[7] a) D. I. Wimpenny, P. M. Pandey, L. J. Kumar, Advances in 3D Printing and Additive Manufacturing Technologies, Springer Singapore Pte. Limited, Singapore, SINGAPORE 2016; b) G. A. Adam, D. Zimmer, Rapid Prototyping Journal 2015.
[8] a) U. Delli, S. Chang, Procedia Manufacturing 2018, 26, 865; b) Z. Jin, Z. Zhang, J. Ott, G. X. Gu, Additive Manufacturing 2020, 101696; c) H. Zhang, S. K. Moon, T. H. Ngo, ACS applied materials & interfaces 2019, 11, 17994; d) T. Wang, T.-H. Kwok, C. Zhou, S. Vader, Journal of manufacturing systems 2018, 47, 83; e) T. DebRoy, T. Mukherjee, H. Wei, J. Elmer, J. Milewski, Nature Reviews Materials 2020, 1; f) C. Wang, X. P. Tan, S. B. Tor, C. S. Lim, Additive Manufacturing 2020, 36, 101538; g) G. D. Goh, S. L. Sing, W. Y. Yeong, Artificial Intelligence Review 2020, 1; h) L. Scime, J. Beuth, Additive Manufacturing 2019, 25, 151; i) L. Scime, J. Beuth, Additive Manufacturing 2018, 19, 114; j) A. Caggiano, J. Zhang, V. Alfieri, F. Caiazzo, R. Gao, R. Teti, CIRP Annals 2019, 68, 451.
[9] F. Pesapane, M. Codari, F. Sardanelli, European radiology experimental 2018, 2, 35.
[10] R. MICHALSIK, J. Carbonell, L. MICHE, Palo Alto: Tioga Publishing, 1983.
[11] J. Schmidhuber, Neural networks 2015, 61, 85.
[12] M. E. Morocho-Cayamcela, H. Lee, W. Lim, IEEE Access 2019, 7, 137184.
[13] B. F. King Jr, Am Roentgen Ray Soc, 2017.
[14] D. Jakhar, I. Kaur, Clinical and experimental dermatology 2020, 45, 131.
[15] O. Taran, S. Bonev, S. Voloshynovskiy, presented at ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2019.
[16] A. Almetwally, H. Jabbari, Journal of Natural Gas Science and Engineering 2020, 76, 103192.
[17] P. Martinek, O. Krammer, Computers & Industrial Engineering 2019, 136, 187.
[18] W. Lao, M. Li, T. N. Wong, M. J. Tan, T. Tjahjowidodo, Virtual and Physical Prototyping 2020, 15, 178.
[19] Q. Huang, Y. Wang, M. Lyu, W. Lin, IEEE Transactions on Automation Science and Engineering 2020.
[20] A. Menon, B. Póczos, A. W. Feinberg, N. R. Washburn, 3D Printing and Additive Manufacturing 2019, 6, 181.
[21] Z. Zhu, D. W. H. Ng, H. S. Park, M. C. McAlpine, Nature Reviews Materials 2021, 6, 27.
[22] A. Conev, E. E. Litsa, M. R. Perez, M. Diba, A. G. Mikos, L. E. Kavraki, Tissue Engineering Part A 2020.
[23] M. Elbadawi, B. Muñiz Castro, F. K. H. Gavins, J. J. Ong, S. Gaisford, G. Pérez, A. W. Basit, P. Cabalar, A. Goyanes, International Journal of Pharmaceutics 2020, 590, 119837.
[24] a) G. Casalino, Optics & Laser Technology 2018, 100, 165; b) J. Zhou, B. Huang, Z. Yan, J.-C. G. Bünzli, Light: Science & Applications 2019, 8, 1.
[25] P. R. Wiecha, A. Lecestre, N. Mallet, G. Larrieu, Nature nanotechnology 2019, 14, 237.
[26] a) J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Nature 2017, 549, 195; b) F. N. Khan, Q. Fan, C. Lu, A. P. T. Lau, Journal of Lightwave Technology 2019, 37, 493; c) F. N. Khan, C. Lu, A. P. T. Lau, presented at 2018 Optical Fiber Communications Conference and Exposition (OFC) 2018; d) Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, Nanophotonics 2020, 1; e) L. Li, H. Ruan, C. Liu, Y. Li, Y. Shuang, A. Alù, C.-W. Qiu, T. J. Cui, Nature communications 2019, 10, 1; f) X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, A. Ozcan, Science 2018, 361, 1004; g) H. Ren, W. Shao, Y. Li, F. Salim, M. Gu, Science Advances 2020, 6, eaaz4261; h) S. You, J. Guan, J. Alido, H. H. Hwang, R. Yu, L. Kwe, H. Su, S. Chen, Journal of Manufacturing Science and Engineering 2020, 142.
[27] J. P. Winkler, J. Grönberg, A. Vogelsang, presented at 2019 IEEE 27th International Requirements Engineering Conference (RE) 2019.
[28] S. M. McKinney, M. Sieniek, V. Godbole, J. Godwin, N. Antropova, H. Ashrafian, T. Back, M. Chesus, G. C. Corrado, A. Darzi, Nature 2020, 577, 89.
[29] M. Moret, L. Friedrich, F. Grisoni, D. Merk, G. Schneider, Nature Machine Intelligence 2020, 2, 171.
[30] F. Baumann, D. Roller, presented at MATEC web of conferences 2016.
[31] G. Chartrand, P. M. Cheng, E. Vorontsov, M. Drozdzal, S. Turcotte, C. J. Pal, S. Kadoury, A. Tang, Radiographics 2017, 37, 2113.
[32] F. Archetti, A. Candelieri, Bayesian Optimization and Data Science, Springer, 2019.

Copyright © 2021 Litty Varghese Thekkekara Creative Commons License Publishing time:2021-06-30
This work is licensed under a Creative Commons Attribution 4.0 International License