Tape Casting Technique for Fabrication of Piezoelectric Ceramics and Other Multilayered Devices-A Review

Prasanta Kumar Panda ( CSIR-National Aerospace Laboratories, Bangalore )

Benudhar Sahoo ( CSIR-National Aerospace Laboratories )

https://doi.org/10.37155/2717-526X-0302-1

Abstract

Tape casting is a preferred technique for fabrication of micron sized thin sheets and multi-layered stacks. This technique can be used for all types of materials available in powder form. Therefore, this is a versatile technique used for fabrication of capacitors, piezoelectric multi-layered stacks, functional gradient materials, low temperature co-fired ceramics (LTCC) etc. involving all types of metals, ceramics and polymers. In this article, tape casting method is reviewed including the slurry preparation and role of various ingredients. This technique is widely used for fabrication of piezoelectric multi-layered stacks in order to reduce the “driving voltage” up to few volts for micro-meter sized thin layers. The preparation methodology of slurry making for tape casting and role of various ingredients are discussed in detail including multi-layered fabrication of devices. Typical tape casting examples of lead zirconate titanate (PZT) and barium strontium zirconate titanate (BSZT) lead free piezo materials are also presented. Various application of tape casting in recent years has been reviewed.

Keywords

Tape casting; Slurry; Binder; Plasticizer; Multilayered stack

Full Text

PDF

References

[1]. Mistler RE. Tape casting: past, present, potential. Am Ceram Soc Bull. 1998; 77: 82-86.
[2]. Mistler RE. Twiname ER. Tape casting: theory and practice, The American Ceramic Society, Westerville; 2000.
[3]. Mistler RE. Tape casting: the basic process for meeting the needs of the electronic industry. Am Ceram Soc Bull. 1990; 69: 1022-1026.
[4]. Howatt GN, Breckenridge RG, Brownlow JM. Fabrication of thin ceramic sheets for capacitors. J Am Ceram Soc. 1947; 30: 237-242.
[5]. Howatt GN. Method of producing high-dielectric high-insulation ceramic plates, United States patent US 2,582,993. 1952 Jan 22.
[6]. Park Jr JL. Manufacture of ceramics, United States patent US 2,966,719. 1963 Jan 3.
[7]. Feng M, Feng Y, Zhang T, Li J, Chen Q, Chi Q, Lei Q. Recent advances in multilayer-structure dielectrics for energy storage application. Adv. Sci. 2021; 2102221, published online, https://doi.org/10.1002/advs.202102221
[8]. Mistler RE, Shanefield DJ, Runk RB. Tape casting of ceramics, in ceramic processing before firing, edited by G. Y. Onoda Jr., L. L. Hench, John Wiley & Sons, New York, 1978, pp.416-417.
[9]. Bulatova R, Andersen KB, Kaiser A, Negra MD, Bahl CRH. Thickness control and interface quality as functions of slurry formulation and casting speed in side-by-side tape casting. J. Eur. Ceram. Soc. 2014; 34: 4285-4295.
[10]. Jabbari M, Bulatova R, Tok AIY, Bahl CRH, Mitsoulis E, Hattel JH. Ceramic tape casting: A review of current methods and trends with emphasis on rheological behaviour and flow analysis. Mater Sci Eng B. 2016; 212: 39-61.
[11]. Liu Z, Wang Y, Li Y. Combinatorial study of ceramic tape-casting slurries. ACS Comb Sci. 2012; 14: 205-210.
[12]. Hotza D, Greil P. Review: aqueous tape casting of ceramic powders. Mater Sci Eng A. 1995; 202: 206-217.
[13]. Shanefield DJ. Organic additives and ceramic processing, Kluwer Academic Publishers, Boston, 1995.
[14]. Zhang J, Jiang D, Weisensel L, Greil P. Binary solvent mixture for tape casting of TiO2 sheets. J Eur Ceram Soc. 2004; 24: 147-155.
[15]. Cannon WR, Morris J R, Milteslta KR. Dispersants for non-aqueous tape casting, in: J. B. Blum, W R. Cannon, editors, Advances in ceramics, Westerville, OH, The American Ceramic Society, 1986, Vol. 19, pp. 161-174.
[16]. Pagnoux C, Chartier T, Granja M, Doreau F, Ferreira JM, Baumard JF. Aqueous suspensions for tape-casting based on acrylic binders. J Eur Ceram Soc. 1998; 18: 241-247.
[17]. Kristoffersson A, Roncari E, Galassi C. Comparison of different binders for water-based tape casting of alumina. J Eur Ceram Soc. 1998; 18: 2123-2131.
[18]. Tasic N, Brankovic Z, Stanojevic ZM, Brankovic G. Effect of binder molecular weight on morphology of TiO2 films prepared by tape casting and their photovoltaic performance. Sci Sinter. 2012; 44: 365-372.
[19]. Immergut EH, Mark HF. Principles of plasticization, in: R. F. Gould, editors, Advances in Chemistry Series, plasticization and plasticizer processes, Washington, DC, Am Chem Soc. 1965, Vol. 48, pp. 6.
[20]. Bitterlich B, Lutz C, Roosen A. Rheological characterization of water-based slurries for the tape casting process. Ceram Int. 2002; 28: 675-683.
[21]. Lv Z, Zhang T, Jiang D, Zhang J, Lin Q. Aqueous tape casting process for SiC. Ceram Int. 2009; 35: 1889-1895.
[22]. Navarro A, Alcock JR, Whatmore RW, Aqueous colloidal processing and green sheet properties of lead zirconate titanate (PZT) ceramics made by tape casting. J Eur Ceram Soc. 2004; 24: 1073-1076.
[23]. Ren L, Luo X, Zhou H. The tape casting process for manufacturing low-temperature co-fired ceramic green sheets: A review. J Am Ceram Soc. 2018; 101: 3874-3889.
[24]. Gurak NR, Josty PL, Thompson RJ. Properties and uses of synthetic emulsion polymers as binders in advanced ceramics processing. Am. Ceram. Soc. Bull. 2987; 66: 1495–1497.
[25]. Nahass P, Rhine WE, Pober RL, Bowen HK, Robbins WL. A comparison of aqueous and non-aqueous slurries for tape casting, and dimensional stability in green tapes. Ceram. Trans. 1990;15: 355-364.
[26]. Pagnoux C, Chartier T, Granja M, Doreau F, Ferreira JM, Baumarda JF. Aqueous suspensions for tape-casting based acrylic binders. J. Eur. Ceram. Soc. 1998; 18: 241-247.
[27]. Doreau F, Tarı̀ G, Pagnoux C, Chartier T, Ferreira JM. Processing of aqueous tape-casting of alumina with acrylic emulsion binders. J. Eur. Ceram. Soc. 1998; 18: 311-321.
[28]. Feng JH, Dogan F, Effects of solvent mixtures on dispersion of lanthanum-modified lead zirconate. J Am Ceram Soc. 2000; 83: 1681-1686.
[29]. Minatto FD, Milak P, De Noni Jr A, Hotza D, Montedo ORK. Multilayered ceramic composites–A review. Adv Appl Ceram. 2015; 114: 127-138.
[30]. Tok AIY, Boey FYC, Khor MKA. Tape casting of high dielectric ceramic substrates for microelectronics packaging, J. Mater. Eng. Perform. 1999; 8: 469-472.
[31]. Michalek M, Blugan G, Graule T, Kuebler J. Comparison of aqueous and non-aqueous tape casting of fully stabilized ZrO2 suspensions, Powder Technol. 2015; 274: 276–283.
[32]. Lutz C, Roosen A. Wetting behavior of tape casting slurries on tape carriers. Ceram Trans. 1998; 83: 163-170.
[33]. Runk RB, Andrejco M J. A precision tape casting machine for fabricating thin, organically suspended ceramic tapes. Am Ceram Soc Bull. 1975; 54: 199-200.
[34]. Descamps M, Ringuet G, Leger D, Thierry B. Tape-casting: relationship between organic constituents and the physical and mechanical properties of tapes. J Eur Ceram Soc. 1995; 15: 357-362.
[35]. Yu M, Zhang J, Li X, Liang H, Zhong H, Li Y, Duan Y, Jiang DL, Liu X, Huang Z. Optimization of the tape casting process for development of high performance alumina ceramics. Ceram Int. 2015; 41: 14845-14853.
[36]. Blugan G, Morawa K, Koebel S, Graule T, Kuebler J. Development of a tape casting process for making thin layers of Si3N4 and Si3N4 +TiN. J. Eur. Ceram. Soc. 2007; 27: 4789–4795.
[37]. Mori T, Yamada T, Tanaka T, Katagiri A, Tsubaki J. Effect of slurry properties on the crack formation in ceramic green sheets during drying. J. Ceram. Soc. Jpn. 2006; 114: 823-828.
[38]. Martinez CJ. Lewis JA. Rheological, structural, and stress evolution of aqueous Al2O3: latex tape-cast layers. J. Am. Ceram. Soc., 2002; 85: 2409–2416.
[39]. Kiennemann J, Chartier T, Pagnoux C, Baumard JF, Huger M, Lamerant JM. Drying mechanisms and stress development in aqueous alumina tape casting, J. Eur. Ceram. Soc. 2005; 25: 1551–1564.
[40]. Panda PK, Sahoo B, Raja S, Vijaya Kumar MP, Shankar V. Electromechanical and dynamic characterization of in-house fabricated amplified piezo actuator. Smart Mater Res. 2012; 2012: 203625.
[41]. Sahoo B, Panda PK. Fabrication of simple and ring-type piezo actuators and their characterization. Smart Mater Res. 2012; 2012: 821847.
[42]. Uchino K. Ceramic actuators: principles and application. MRS Bulletin. 1993; 18: 42-48.
[43]. Sahoo B, Panda PK. Effect of CeO2 concentration on dielectric, ferroelectric and piezoelectric properties of PMN-PT (67/33) composition. J Mater Sci. 2007; 42: 4745-4752.
[44]. Zarnik MS, Kosec M. Pb(Mg1/3Nb2/3)O3 – PbTiO3 (PMN-PT) material for actuator applications. Smart Mater Res. 2011: 2011; 452901.
[45]. Sahoo B, Panda PK. Ferroelectric, dielectric and piezoelectric properties of Pb1-xCex (Zr0.60Ti0.40)O3], 0 x 0.08. J Mater Sci. 2007; 42: 9684-9688.
[46]. Takahasi S, Yano T, Fukui I, Sato E. Multilayer piezoelectric ceramic actuator with varying thickness layers. Jpn J Appl Phys. 1985; 24: 206-208.
[47]. Politova ED, Golubko NV, Kaleva GM, Mosunov AV, Sadovskaya NV, Stefanovich SY, Kiselev DA, Kislyuk AM, Chichkov MV, Panda PK. Structure, ferroelectric and piezoelectric properties of KNN-based perovskite ceramics. Ferroelectrics. 2019; 538: 45-51.
[48]. Politova ED, Golubko NV, Kaleva GM, Mosunov AV, Sadovskaya NV, Stefanovich SY, Kiselev DA, Kislyuk AM, Panda PK. Processing and characterization of lead-free ceramics on the base of sodium–potassium niobate. J Adv Dielectr. 2018; 8: 1850004.
[49]. Chandraiah M, Panda PK. Effect of SrO on piezoelectric, dielectric and ferroelectric properties of (Ba1-x Srx) (Ti0.98 Zr0.02)O3 lead free piezoceramics. J Mater Sci: Mater Electron. 2015; 26: 3143-3147.
[50]. Chandraiah M, Panda PK. Effect of dopants (A=Mg2+, Ca2+ and Sr2+) on ferroelectric, dielectric and piezoelectric properties of (Ba1−xAx) (Ti0.98Zr0.02) O3 lead-free piezo ceramics. Ceram Int. 2915; 41: 8040–8045.
[51]. Hussain F, Khesro A, Lu Z, Wang G, Wang D. Lead free multilayer piezoelectric actuators by economically new approach. Front. Mater. 2020; 7: 87.
[52]. Kawada S, Kimura M, Higuchi Y, Takagi H. (K, Na) NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes. Appl. Phys. Exp. 2009; 2: 111401.
[53]. Krauss W, Schütz D, Naderer M, Orose D, Reichmann K. BNT-based multilayer device with large and temperature independent strain made by a water-based preparation process. J. Eur. Ceram. Soc. 2011; 31: 1857-1860.
[54]. Reichmann K, Feteira A, Li M. Bismuth sodium titanate based materials for piezoelectric actuators. Materials 2015; 8: 8467–8495.
[55]. Nguyen VQ, Kang JK, Han HS, Lee HY, Jeong SJ, Ahn CW, Kim IW, Lee JS. Bi-based lead-free ceramic multilayer actuators using AgPd-(Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3 composite inner electrodes. Sens. Actuators A. 2013; 200: 107–113.
[56]. Ahn CW, Kim HS, Woo WS, Won SS, Seog HJ, Chae SA, Park BC, Jang KB, Ok YP, Chong HH, Kim IW. Low temperature sintering of Bi0.5(Na, K)0.5TiO3 for multilayer ceramic actuators. J. Am. Ceram. Soc. 2015; 98: 1877–1883.
[57]. Plianaek P, Bureemat W, Sittkankaew M, Thammajinda M, Hemadhulin O, Wattanasarn H. Sintering process for tape casting of piezoelectric ceramics, Ferroelectr. 2019; 552: 132-139.
[58]. Wattanasarn H, Hemadhulin O, Ngennam T, Saenklan S. Enhanced piezoelectric properties of Pb0.976K0.012Bi0.012 [(Zr0.53 Ti0.47)0.99 Nb0.01]O3, ceramic tape casting by three step sintering. Integr. Ferroelectr. 2021; 214: 158-165.
[59]. Tok AIY, Boey FYC, Khor MKA. Tape casting of high dielectric ceramic composite substrates for microelectronics application. J Mater Engg Perform. 1999; 8: 469-472.
[60]. Wang L, Tang G, Xu ZK, Preparation and electrical properties of multilayer ZnO varistors with water-based tape casting. Ceram. Int. 2009; 35: 487-492.
[61]. Panda PK, Sahoo B. PZT and lead-free piezo ceramics for aerospace and energy applications, in: Y. Mahajan, R. Johnson, editors, Handbook of Advanced Ceramics and Composites, Springer Nature Switzerland AG 2020, pp. 1081-1103.
[62]. Baquero T, Escobar J, Frade J, Hotza D. Aqueous tape casting of micro and nano YSZ for SOFC electrolytes. Ceram Int. 2013; 39: 8279-8285.
[63]. Timakul P, Jinawath S, Aungkavattana P. Fabrication of electrolyte materials for solid oxide fuel cells by tape-casting. Ceram Int. 2008; 34: 867-871.
[64]. Thomas D, Abhilash P, Sebastian MT. Casting and characterization of LiMgPO4 glass free LTCC tape for microwave applications. J Eur Ceram Soc. 2013; 33: 87-93.
[65]. Liu T, Zhang Y, Zhang X, Wang L, Zhao SX, Lin YH, Shen Y, Luo J, Li L, Nan CW. Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification. J Mater Chem A. 2018; 6: 4649-4657.
[66]. Jiang Z, Xie H, Wang S, Song X, Yao X, Wang H. Perovskite membranes with vertically aligned micro channels for all‐solid‐state lithium batteries. Adv Energy Mater. 2018; 8: 1801433.
[67]. Imanishi N, Hasegawa S, Zhang T, Hirano A, Takeda Y, Yamamoto O. Lithium anode for lithium-air secondary batteries. J Power Sources. 2008; 185: 1392-1397.
[68]. Loho C, Djenadic R, Bruns M, Clemens O, Hahn H. Garnet-type Li7La3Zr2O12 solid electrolyte thin films grown by CO2-laser assisted CVD for all-solid-state batteries. J Electrochem Soc. 2017; 164: A6131-A6139.
[69]. Xiao DL, Tong J, Feng Y, Zhong GH, Li WJ, Yang CL. Improved performance of all-solid-state lithium batteries using LiPON electrolyte prepared with Li-rich sputtering target. Solid State Ionics. 2018; 324: 202-206.
[70]. Jiang Z, Wang S, Chen X, Yang W, Yao X, Hu X, Han Q, Wang H. Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv Mater. 2020; 32: 1906221.
[71]. Gamarra C, Sotomayor ME, Bucheli W, Amarilla JM, Sanchez JY, Levenfeld B, Varez A. Tape casting manufacturing of thick Li4Ti5O12 ceramic electrodes with high areal capacity for lithium-ion batteries. J. Eur. Ceram. Soc. 2021; 41: 1025-1032.
[72]. Cologna M, Sglavo VM, Bertoldi M. Sintering and deformation of solid oxide fuel cells produced by sequential tape casting. Int J Appl Ceram Technol. 2010; 7: 803-813.
[73]. Jang WS, Hyun SH, Kim SG. Preparation of YSZ/YDC and YSZ/GDC composite electrolytes by the tape casting and sol-gel dip-drawing coating method for low-temperature SOFC. J Mater Sci. 2002; 37: 2535-2541.
[74]. Tiffee EI, Weber A, Herbstritt D. Materials and technologies for SOFC components. J Eur Ceram Soc. 2001; 21: 1805-1811.
[75]. Jurkow D, Golonka L. Cold chemical lamination: new bonding technique of LTCC green tapes. Int. J Appl Ceram Technol. 2010; 7: 814-820.
[76]. Imanaka Y. Multilayered low temperature cofired ceramics (LTCC) technology, Springer USA, 2005.
[77]. Golonka L. Technology and applications of low temperature cofired ceramic (LTCC) based sensors and microsystems. Bull Pol Acad Sci-Tech. 2006; 54: 223-233.
[78]. Jurkow D, Dazbrowski A, Golonka L, Zawada T. Preliminary model and technology of piezoelectric low temperature co-fired ceramic (LTCC) uniaxial accelerometer. Int J Appl Ceram Technol. 2013; 10: 395-404.
[79]. Hao H, Liu M, Liu H, Zhang S, Shu X, Wang T, Yao Z, Cao M. Design, fabrication and dielectric properties in core-double shell BaTiO3-based ceramics for MLCC application, RSC Adv. 2015; 5: 8868–8876.
[80]. Hong K, Lee TH, Suh JM, Yoon SH, Jang HW. Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. J. Mater. Chem. C. 2019; 7: 9782-9802.
[81]. Pithan C, Hennings D, Waser R. Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC. Int. J. Appl. Ceram. Technol. 2005; 2: 1–14.
[82]. Zhang Y, Wang X, Kim JY, Tian Z, Fang J, Hur KH, Li L. High performance BaTiO3-based BME-MLCC nano powder prepared by aqueous chemical coating method. J. Am. Ceram. Soc. 2012; 95:1628–1633.
[83]. Kishi H, Mizuno Y, Chazono H. Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn. J. Appl. Phys. 2003; 42: 1-15.
[84]. Liu H. Electrocaloric effect enhanced thermal conduction of a multilayer ceramic structure. Chin. Phys. B. 2020; 29: 087701.
[85]. Faye R, Strozyk H, Dkhil B, Defay E. Large heat flux in electrocaloric multilayer capacitors. J. Phys. D: Appl. Phys. 2017; 50: 464002.
[86]. Nair B, Usui T, Crossley S, Kurdi S, Guzman-Verri G G, Moya X, Hirose S, Mathur N D. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature 2019; 575: 468-472.
[87]. Belon R, Boulesteix R, Geffroy PM, Maitre A, Salle C, Chartier T. Tape casting of multilayer YAG-Nd:YAG transparent ceramics for laser applications: study of green tapes properties. J. Eur. Ceram. Soc. 2019; 39: 2161-2167.
[88]. Ma C, Tang F, Lin H, Chen W, Zhang G, Cao Y, Wang W, Yuan X, Dai Z. Fabrication and planar waveguide laser behavior of YAG/Nd:YAG/YAG composite ceramics by tape casting. J Alloy Compd. 2015; 640: 317-320.
[89]. Gabrielyan NT, Merkle LD, Kupp ER, Messing GL, Dubinskii M. Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm. Opt Lett. 2010; 35: 922-924.
[90]. Ba X, Li J, Pan Y, Zeng Y, Kou H, Liu W, Liu J, Wua L, Guo J. Comparison of aqueous and non-aqueous-based tape casting for preparing YAG transparent ceramics, J. Alloy. Compd. 2013; 577: 228-231.
[91]. Panda PK, Sahoo B, Chandraiah M, Sreekumari R, Bindu M, Ramakrishna J, Kiran P. Piezoelectric energy harvesting using PZT bimorphs and multilayered stacks, J Electron Mater. 2015; 44: 4349-4353.
[92]. Jeon CJ, Hwang HN, Jeong YH, Yun JS, Nam JH, Cho JH, Paik JH, Lim JB, Nahm S, Kim ES. High energy-density 0.72Pb(Zr0.47Ti0.53)O3-0.28Pb[(Zn0.45Ni0.55)1/3Nb2/3]O3, thick films fabricated by tape casting for energy harvesting device applications. J Korean Phys Soc. 2013; 63: 1772-1776.
[93]. Panda PK, Sahoo B, Ramakrishna J, Bindu M, Prasad Rao DSD. Recent studies on vibrational energy harvesting of PZT materials. Mater Today Proc. 2018; 5: 21512-21516.
[94]. Corbin SF, Apte PS. Engineered porosity via tape casting, lamination and the percolation of pyrolyzable particulates, J Am Ceram Soc. 1999; 82: 1693-1701.

Copyright © 2021 Prasanta Kumar Panda, Benudhar Sahoo Creative Commons License Publishing time:2021-12-25
This work is licensed under a Creative Commons Attribution 4.0 International License