Kinetic Study of Copper Retention by Kaolin Using a System of Supports Designed in 3D

A. Macías-García ( Department of Mechanical, Energetic and Materials Engineering. School of Industrial Engineering. University of Extremadura. Avda. de Elvas, s/n, 06006, Badajoz. Spain )

J.E. Calderón-Rios ( Department of Mechanical, Energetic and Materials Engineering. School of Industrial Engineering. University of Extremadura. Avda. de Elvas, s/n, 06006, Badajoz. Spain )

M.A. Díaz-Díez ( Department of Mechanical, Energetic and Materials Engineering. School of Industrial Engineering. University of Extremadura. Avda. de Elvas, s/n, 06006, Badajoz. Spain )

D. Torrejón-Martín ( Department of Mechanical, Energetic and Materials Engineering. School of Industrial Engineering. University of Extremadura. Avda. de Elvas, s/n, 06006, Badajoz. Spain )

Juan Pablo Carrasco-Amador ( University of Extremadura )

https://doi.org/10.37155/2717-526X-0201-3

Abstract

Kaolin is a clay product of the decomposition of feldspatic rocks; it is a hydrated aluminum silicate whose main component is kaolinite; its formula is 2H2O-Al2O3-2SiO2 and it has a wide application in various industries. In this study copper ions removal of aqueous solutions using kaolin, was investigated. Kaolin sample are texturally and chemically characterized and its electrical conductivity was established, and finally diverse kinetic models were tested to the copper ion retention process. Kinetic adsorption and electroadsorption processes of Cu (II) ions on kaolin are practically identical.  The qe values for both adsorption and electroadsorption are of the order of 10.1 mg·g-1 for an equilibration time of 1200 min. This suggests that adsorption procedure is the determining factor. In view of results, we can indicate that kinetic adsorption procedure of Cu (II) ions on kaolin is adjusted to a pseudo second order kinetics. High regression coefficients are reached, greater than those of first order pseudo model, with worths above 0.99. Its explanation comes from the valence forces involved in the adsorption mechanism, due to electrons exchange between Cu (II) ions and the adsorbent. Likewise, correlation between experimental qe values, and the calculated qe, through the kinetic model are good. A more detailed observation through intraparticle diffusion model allows us to distinguish two well defined linear parts, a first one: that would correspond to the transport of ions from the dissolution to the external covering of the absorbent, with a fast ions distribution on the external kaolin covering. And a second part, which symbolize the intraparticular diffusion, as well as Cu (II) union with the kaolin  internal active sites.

Keywords

Kaolin; copper; adsorption; kinetic

Full Text

PDF

References

[1] J. F. Bartolomé. El Caolín: composición, estructura, génesis y aplicaciones. Boletín de la Sociedad Española de Cerámica y Vidrio, 36(1) 17-19 (1997).
[2] H. H. Murray. Applied clay mineralogy. Ocurrences, processing and application of kaolins,bentonites, palygorskite-sepiolite, and common clays. Elsevier (2006). Haydn
[3] H. Murray. Chapter 5, Kaolin Applications Developments in Clay Science, Volume 2, 2006, Pages 85 – 109.
[4] T. Adkins., et al. Kaolin particle size distribution effects on whitewares—related performance properties. Chapter in Science of Whitewares. Carty, W.M. and Sinton, C.W. eds. American Ceramic Society, Westerville, OH, (2000) pp. 121–130.
[5] M.S. Prasad, K.J. Reid, H.H. Murray Kaolin: processing, properties and applications. Applied Clay Science, Volume 6, Issue 2, September 1991, Pages 87 – 119.
[6] L. Welch, and R. Dahlquist. Kaolin clay in the paper industry. Intern. Rep., J.M. Huber Corporation, (1984) pp. 1-36.
[7] Georges Ekosse. The Makoro kaolin deposit, southeastern Botswana: its genesis and possible industrial applicationsApplied Clay Science, Volume 16, Issues 5–6, May 2000, Pages 301 – 320.
[8] F. H. Abd El-Rahiem, M.S. Hassan, K.A.Selim, N.A. Abdel-Khalek. Evaluation and beneficiation of syrian kaolin for different industrial applications. The Journal of ORE DRESSING, 10 (2008) 34-41.
[9] Tan-Hiep-Dang, Bing-Hung Chen, Duu-Jong Lee. Optimization of biodiesel production from transesterification of triolein using zeolite LTA catalysts synthesized from kaolin clay. Journal of the Taiwan Institute of Chemical Engineers, Volume 79, October 2017, Pages 14-22.
[10] Yavuz Ömer, Altunkaynak Yalcin, Güzel Fuat. “Removal of copper, níkel, cobalt and manganese from aqueous solution by kaolinite”, Department of chemistry, faculty of sciences & arts, Dicle university Diyarbakir Turkey. 18 July 2002.
[11] Agency for Toxic Substances and Disease Registry Division of Toxicolog. Atlanta, Georgia.
[12] S. Yu, R. Van Der Meer, A.C. Beynen. Excessive hepatic copper accumulation in jaundiced rats fed a high-copper diet. Biol Trace Elem Res 88(3) (2002) 255-269.
[13] B.P. Zietz , J.D. deVergara, H. Dunkelberg. Copper concentrations in tap water and possible effects on infant’s health-results of a study in Lower Saxony, Germany. Environ Res 92(2) (2003b) 129-138.
[14] B.P. Zietz, H.H. Dieter, M. Lakomek, et al.. Epidemiological investigation on chronic copper toxicity to children exposed via the public drinking water supply. Sci Total Environ 301(1-3) (2003a) 127-144.
[15] Toro, N., Briceño, W., Pérez, K., Cánovas, M., Trigueros, E., Sepúlveda, R., Hernández, P. Leaching of Pure Chalcocite in a Chloride Media Using Sea Water and Waste Water. Metals Basel 9 (2019) 780.
[16] Toro, N., Pérez, K., Saldaña, M., Jeldres, R. I., Jeldres, M., Cánovas, M. Dissolution of pure chalcopyrite with manganese nodules and waste water. Journal of Materials Research and Technology, 9(1), (2019) 798–805. https://doi.org/10.1016/j.jmrt.2019.11.020
[17] Pérez, K., Jeldres, R., Nieto, S., Salinas-Rodríguez, E., Robles, P., Quezada, V., Hernández-Ávila, J., Toro, N. Leaching of pure chalcocite in a chloride media using waste water at high temperature. Metals, 10(384), (2020) 1–9. https://doi.org/10.3390/met10030384
[18] J. Sánchez-González, A. Macías-García, M.F. Alexandre-Franco, V. Gómez-Serrano. “Electrical conductivity of carbon blacks under compression”. Carbon 43 (2005) 741–747.
[19] A. Macías-García, J.P. Carrasco-Amador, V. Encinas-Sánchez, M.A. Díaz-Díez, D. Torrejón-Martín. “ Preparation of activated carbon from kenaf by activation with H3PO4. Kinetic study of the adsorption/electroadsorption using a system of supports designed in 3D, for environmental applications”. Journal of Environmental Chemical Engineering 7 (2019), issue 4, 103196.
https://doi.org/10.1016/j.jece.2019.103196

[20] P.S. Kumar, K. Ramakrishnan, D.S. Kirupha, S. Sivanesan, Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk, Braz. J. Chem. Eng. 27 (2) (2010) 437–455.
[21] P. Kumar, H. Singh, M. Kapur, M.K. Mondal, Comparative study of Malathion removal from aqueous solution by agricultural and commercial adsorbents, J. Water Process Eng. 3 (2014) 67–73.
[22] S. Lagergren, About the theory of so-called adsorption of soluble substances Kungliga Svenska Vetenskapsakademiens, Handlingar Band 24 (4) (1898) 1–39.
[23] Y.S. Ho, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics 59 (1) (2004) 171–177.
[24] G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites, Water Res. 18 (1984) 1501.
[25] Y.S. Ho, G.A. McKay, Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Trans. IChemE 76B (1998) 332.
[26] V. Fierro, V. Torné-Fernández, D. Montané, A. Celzard, Adsorption of phenol onto activated carbons having different textural and surface properties, Microporous Mesoporous Mater. 111 (1–3) (2008) 276–284.
[27] Y. Huang, S. Li, J. Chen, X. Zhang, Y. Chen, Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: adsorption capacity, kinetic and isotherm studies, Appl. Surf. Sci. 293 (2014) 160–168.
[28] A. Mittal, A. Malviya, D. Kaur, J. Mittal, L. Kurup, Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials, J. Hazard. Mater. 148 (1–2) (2007) 229– 240.
[29] A. Macias-García, M. Gómez Corzo, M. Alfaro Domínguez, M. Alexandre Franco, J. Martínez Naharro. Study of the adsorption and electroadsorption process of Cu (II) ions within thermally and chemically modified activated carbon. Journal of Hazardous Materials 328 (2017) 46–55.
[30] E. Galán Huerto, J.L. Martín Vivaldi Caolines españoles: Geología, minerología y génesis. Parte IV Depósitos Paleozoicos, Neógenos y Cuaternarios. Boletín Español de Cerámica y Vidrio, (1974) 523-546.
[31] P. Herranz Araújo : Nota preliminar sobre el estudio geológico de las Sierras Paleozoicas entre Oliva de Merida y Hornachos (Badajoz). Semin.de Estrat. 6 (1970) 116.
[32] F. Hernández Pacheco, R. Cabanas : Memoria y hoja núm. 858 (El Viso ) del Mapa Geológico de España a 1:50.000 ./.G.M.E. Madrid (1968).
[33] V. Sánchez Cela : Consideraciones petrogenéticas de las rocas dioríticas de la zona de Mérida. Est. Geol. 27 (1971) 305-310.
[34] HH Murray, SC Lyons. Further correlation of kaolinite crystallinity with chemical and physical properties- Clays & Clay Minerals, 8 (1960) 11-17.
[35] L Urama L. Determinación de la capacidad de adsorción de urea mediante el uso de zeolitas phillipsita y stilbita bajo condiciones de membranas para diálisis. Tesis de pregrado. Universidad de Carabobo (2012).
[36] M. E. Ramosa, P. R. Bonellia, A. L. Cukierman. “Physico-chemical and electrical properties of activated carbon cloths. Effect of inherent nature of the fabric precursor. Colloids and Surfaces A: Physicochem”. Engineering Aspects, vol. 324 (2008), páginas 86–92.
[37] D. Pantea, H. Darmstadt, S. Kaliaguine, C. Roy. “Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology”. Applied Surface Science 217 (2003), páginas 181–193.
[38] D. L. Johnsen, Z. Zhang, H. Emamipour, Z. Yan, M.J. Rood. “Effect of isobutane adsorption on the electrical resistivity of activated carbon fiber cloth with select physical and chemical properties”. Carbon, vol. 76 (2014), páginas 435–445.
[39] Dipa Ghosh, Krishna G Bhattacharyya Adsorption of methylene blue on kaolinite. Applied Clay Science, Volume 20, Issue 6, February 2002, Pages 295 - 300
[40] Saldaña, M., Toro, N., Castillo, J., Hernández, P., Navarra, A. Optimization of the heap leaching process through changes in modes of operation and discrete event simulation. Minerals, 9(7), (2019) 1–13. https://doi.org/10.3390/min9070421
[41] Saldaña, M., Toro, N., Castillo, J., Hernández, P., Trigueros, E., Navarra, A. Development of an analytical model for the extraction of manganese from marine nodules. Metals, 9(8), (2019) 1–11. https://doi.org/10.3390/met9080903
[42] R.W. Coughlin, G. Kreysa, Int. Chem. Eng. 24 (1984) 595.
[43] Y. Huang, S. Li, J. Chen, X. Zhang, Y. Chen, Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: adsorption capacity, kinetic and isotherm studies, Appl. Surf. Sci. 293 (2014)160–168.
[44] A. Mittal, A. Malviya, D. Kaur, J. Mittal, L. Kurup, Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials, J. Hazard. Mater. 148 (1–2) (2007) 229–240.
[45] H. Qiu, L.V. Lu, B. Pan, Q. Zhang, W. Zhang, Q. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ. Sci. A 10 (5) (2009) 716–724.

Copyright © 2020 A. Macías-García, J.E. Calderón-Rios, M.A. Díaz-Díez, D. Torrejón-Martín, Juan Pablo Carrasco-Amador Creative Commons License Publishing time:2020-06-30
This work is licensed under a Creative Commons Attribution 4.0 International License