Optical Properties of the Crystalline Silicon-black Silicon-perovskite Tandem Solar Cells

Ferdinand Gasparyan ( Yerevan State University, 1, Alex Manoogian St., Yerevan 0025, Armenia; National Polytechnic University of Armenia, 105, Teryan St, Yerevan 0009, Armenia. )

https://doi.org/10.37155/2717-526X-0501-3

Abstract

The optical properties of a tandem three-layered structure of crystalline silicon-black silicon-perovskite have been theoretically studied for using it in solar energy conversion. The transfer matrix method is used for obtaining the analytical expressions for the reflection, transmission, and absorption coefficients. It is shown that the transfer matrix method can be successfully applied to the more complicated case of three layers with complex refractive indexes. Numerical calculations performed at an angle of incidence of radiation of 60o showed that in the region of short wavelengths the reflection coefficient takes on low values (several percent), which gradually increase and become > 10% at wavelengths above 0.8 μm. The theoretically modeled results of the reflection coefficient are in good agreement with experimental data carried out for the structures crystalline silicon-black silicon-TiO2-perovskite. The discrepancy between the experimental and model data slowly increases with increasing wavelength. The transmittance was extremely low and increased slowly with the increasing wavelength. It is found that cheaper and easier created tandem crystalline silicon-black silicon-perovskite structure may have the potential for solar energy conversion.

Keywords

Perovskite; Black silicon; Transfer matrix method; Optical properties; Solar cell

Full Text

PDF

References

[1] Khan SB, Irfan S, Zhuanghao Z, et al. Influence of refractive index on antireflectance efficiency of thin films. Materials, 2019;12(9):1483. https://doi.org/10.3390/ma12091483
[2] Jang SJ, Song YM, Yeo CI, et al. Antireflective property of thin film a-Si solar cell structures with graded refractive index structure. Optics Express, 2011;19(102):A108-A117. https://doi.org/10.1364/OE.19.00A108
[3] Ma S, Liu S, Xu Q, et al. A theoretical study on the optical properties of black silicon. AIP Advances, 2018;8(3):035010. https://doi.org/10.1063/1.5018642
[4] Mei H, Wang C, Yao J, et al. Development of novel flexible black silicon. Optics Communications, 2011;284(4):1072-1075. https://doi.org/10.1016/j.optcom.2010.10.024
[5] Ayvazyan G, Vaseashta A, Gasparyan F, et al. Effect of thermal annealing on the structural and optical properties of black silicon. Journal of Materials Science: Materials in Electronics, 2022;33(21):17001-17010. https://doi.org/10.1007/s10854-022-08578-y
[6] Fan Z, Cui D, Zhang Z, et al. Recent progress of black silicon: from fabrications to applications. Nanomaterials, 2020;11(1):41. https://doi.org/10.3390/nano11010041
[7] Marthi SR, Sekhri S and Ravindra NM. Optical properties of black silicon: an analysis. Jom, 2015;67:2154-2159. https://doi.org/10.1007/s11837-015-1527-0
[8] Jurečka S, Králik M, Pinčík E, et al. Microstructure and optical properties of black silicon layers. 21st Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 2018;10976:100-105. https://doi.org/10.1117/12.2518368
[9] Singh JK, Mandal SK and Banerjee G. Refractive index of different perovskite materials. Journal of Materials Research, 2021;36:1773-1793. https://doi.org/10.1557/s43578-021-00257-8
[10] Lamichhane A and Ravindra NM. Energy gap-refractive index relations in perovskites. Materials, 2020;13(8):1917. https://doi.org/10.3390/ma13081917
[11] Ono LK and Qi Y. Research progress on organic–inorganic halide perovskite materials and solar cells. Journal of Physics D: Applied Physics, 2018;51(9):093001. https://doi.org/10.1088/1361-6463/aaa727
[12] Ravindra NM, Ganapathy P and Choi J. Energy gap-refractive index relations in semiconductors-an overview. Infrared Physics & Technology, 2007;50(1):21-29. https://doi.org/10.1016/j.infrared.2006.04.001
[13] Kumar V, Pandey A, Kumar L, et al. Experimental and theoretical investigations on fullerene (C60) induced compact CH3NH3PbI3 perovskite thin films. Physica Scripta, 2022;97(7):075809. https://doi.org/10.1088/1402-4896/ac74ec
[14] Pandey A and Kumar L. Temperature-induced strain management in MAPbI3-xClx hybrid perovskite films. Physica B: Condensed Matter, 2022;628:413566. https://doi.org/10.1016/j.physb.2021.413566
[15] Zhou ZQ, Hu F, Zhou WJ, et al. An investigation on a crystalline-silicon solar cell with black silicon layer at the rear. Nanoscale Research Letters, 2017;12:1-6. https://doi.org/10.1186/s11671-017-2388-y
[16] Haider M and Yang JL. Efficient and stable perovskite-silicon two-terminal tandem solar cells. Rare Metals, 2020;39(7):745-747. https://doi.org/10.1007/s12598-020-01430-4
[17] Kim CU, Yu JC, Jung ED, et al. Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells. Nano Energy, 2019;60:213-221. https://doi.org/10.1016/j.nanoen.2019.03.056
[18] Choi IY, Kim CU, Park W, et al. Two-terminal mechanical perovskite/silicon tandem solar cells with transparent conductive adhesives. Nano Energy, 2019;65:104044. https://doi.org/10.1016/j.nanoen.2019.104044
[19] Al-Ashouri A, Köhnen E, Li B, et al. Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science, 2020;370(6522):1300-1309. https://doi.org/10.1126/science.abd4016
[20] Jošt M, Köhnen E, Morales-Vilches AB, et al. Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy & Environmental Science, 2018;11(12):3511-3523. https://doi.org/10.1039/C8EE02469C
[21] Wang R, Huang T, Xue J, et al. Prospects for metal halide perovskite-based tandem solar cells. Nature Photonics, 2021;15(6):411-425. https://doi.org/10.1038/s41566-021-00809-8
[22] Chen B, Zhengshan JY, Manzoor S, et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 2020;4(4):850-864. https://doi.org/10.1016/j.joule.2020.01.008
[23] Tennyson EM, Frohna K, Drake WK, et al. Multimodal microscale imaging of textured perovskite-silicon tandem solar cells. ACS Energy Letters, 2021;6(6):2293-2304. https://doi.org/10.1021/acsenergylett.1c00568
[24] Green MA, Dunlop ED, Yoshita M, et al. Solar cell efficiency tables (version 62). National Renewable Energy Laboratory (NREL), Golden, CO (United States), 2023. https://doi.org/10.1002/pip.3726
[25] Ying Z, Yang Z, Zheng J, et al. Monolithic perovskite/black-silicon tandems based on tunnel oxide passivated contacts. Joule, 2022;6(11):2644-2661. https://doi.org/10.1016/j.joule.2022.09.006
[26] Cheng P, Wang D and Schaaf P. A review on photothermal conversion of solar energy with nanomaterials and nanostructures: From fundamentals to applications. Advanced Sustainable Systems, 2022;6(9):2200115. https://doi.org/10.1002/adsu.202200115
[27] Katkov MV, Ayvazyan GY, Shayapov VR, et al. Modeling of the optical properties of black silicon passivated by thin films of metal oxides. Journal of Contemporary Physics (Armenian Academy of Sciences), 2020;55:16-22. https://doi.org/10.3103/S106833722001003X
[28] Nishijima Y, Komatsu R, Ota S, et al. Anti-reflective surfaces: cascading nano/microstructuring. Apl Photonics, 2016;1(7):076104. https://doi.org/10.1063/1.4964851
[29] Gasparyan FV and Ayvazyan GY. Reflection and transmission of radiation of the structure crystalline silicon-black silicon-perovskite. Journal of Contemporary Physics (Armenian Academy of Sciences), 2022;57(2):160-165. https://doi.org/10.3103/S1068337222020116
[30] Ayvazyan G, Gasparyan F and Gasparian V. Optical simulation and experimental investigation of the crystalline silicon/black silicon/perovskite tandem structures. Optical Materials, 2023;140:113879. https://doi.org/10.1016/j.optmat.2023.113879
[31] Han K and Chang CH. Numerical modeling of sub-wavelength anti-reflective structures for solar module applications. Nanomaterials, 2014;4(1):87-128. https://doi.org/10.3390/nano4010087
[32] Perez EX. Simulation programs for the analysis of multilayer media. Design, fabrication and characterization of porous silicon multilayer optical devices. 2007. pp. 27-56.
[33] Kuo ML, Poxson DJ, Kim YS, et al. Realization of a near-perfect antireflection coating for silicon solar energy utilization. Optics Letters, 2008;33(21):2527-2529. https://doi.org/10.1364/OL.33.002527
[34] Jäger K, Korte L, Rech B, et al. Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures. Optics Express, 2017;25(12):A473-A482. https://doi.org/10.1364/OE.25.00A473
[35] Raoult E, Bodeux R, Jutteau S, et al. Iterative method for optical modelling of perovskite-based tandem solar cells. Optics Express, 2022;30(6):9604-9622. https://doi.org/10.1364/OE.444698
[36] van Eerden M, Jaysankar M, Hadipour A, et al. Optical analysis of planar multicrystalline perovskite solar cells. Advanced Optical Materials, 2017;5(18):1700151. https://doi.org/10.1002/adom.201700151
[37] Sze SM. Physics of semiconductor devices. 2nd ed. Bell Laboratories, Incorporated Murray Hill, New Jersey A Wiley-Interscience. New York. Chichester. Brisbar. Toronto. Singapore. John Wiley & Sons. 1981.
[38] Evtukh AA, Litovchenko VG, Klyui NI, et al. Electron field emission from porous silicon prepared at low anodisation currents. International Journal of Nanotechnology, 2006;3(1):89-105. https://doi.org/10.1504/IJNT.2006.008723
[39] Martynov YB, Nazmitdinov RG, Moià-Pol A, et al. On the efficiency limit of ZnO/CH3NH3PbI3/CuI perovskite solar cells. Physical Chemistry Chemical Physics, 2017;19(30):19916-19921. https://doi.org/10.1039/C7CP03892E
[40] Chen JZ, Chen TH, Lai LW, et al. Preparation and characterization of surface photocatalytic activity with NiO/TiO2 nanocomposite structure. Materials, 2015;8(7):4273-4286. https://doi.org/10.3390/ma8074273
[41] Cui H, Li J and Yuan H. Bending effect on the resistive switching behavior of a NiO/TiO2 p-n heterojunction. RSC Advances, 2018;8(35):19861-19867. https://doi.org/10.1039/C8RA01180J
[42] Uddin MT, Nicolas Y, Olivier C, et al. Band alignment investigations of heterostructure NiO/TiO2 nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production. Physical Chemistry Chemical Physics, 2017;19(29):19279-19288. https://doi.org/10.1039/C7CP01300K
[43] Yeh P, Yariv A and Hong CS. Electromagnetic propagation in periodic stratified media. I. General theory. Journal of the Optical Society of America, 1977;67(4):423-438. https://doi.org/10.1364/JOSA.67.000423
[44] Li ZY and Lin LL. Photonic band structures solved by a plane-wave-based transfer-matrix method. Physical Review E, 2003;67(4):046607. https://doi.org/10.1103/PhysRevE.67.046607
[45] Hernandez-Rodriguez C, Hernandez VM, Capuj NE, et al. Modeling of experimental reflectance for porous silicon multilayers. Nanotechnology. SPIE, 2003;5118:577-586. https://doi.org/10.1117/12.498950
[46] Kovalenko SA. Descartes-Snell law of refraction with absorption. Semiconductor Physics Quantum Electronics & Optoelectronics, 2001;4(3):214-218. https://doi.org/10.15407/spqeo4.03.214
[47] Kudykina TA. Boundary conditions in case of electromagnetic wave absorption. Physica Status Solidi (b), 1990;160(1):365-373. https://doi.org/10.1002/pssb.2221600136
[48] Löper P, Stuckelberger M, Niesen B, et al. Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. The Journal of Physical Chemistry Letters, 2015;6(1):66-71. https://doi.org/10.1021/jz502471h
[49] Singh P, Sharma SN and Ravindra NM. Applications of porous silicon thin films in solar cells and biosensors. JOM, 2010;62:15-24. https://doi.org/10.1007/s11837-010-0099-2
[50] Aktsipetrov OA, Baranova IM, Evtyukhov KN. Second order non-linear optics of silicon and silicon nanostructures. 1st ed. Boca Raton: CRC Press; 2016. https://doi.org/10.1201/9781315369556
[51] Du T, Xu W, Xu S, et al. Light-intensity and thickness dependent efficiency of planar perovskite solar cells: charge recombination versus extraction. Journal of Materials Chemistry C, 2020;8(36):12648-12655. https://doi.org/10.1039/D0TC03390A

Copyright © 2023 Ferdinand Gasparyan Creative Commons License Publishing time:2023-03-10
This work is licensed under a Creative Commons Attribution 4.0 International License