A Review on Pseudocapacitors: Advances in Nb Oxide - Sodium-Ion Systems

Edna Jerusa Pacheco Sampaio ( Corrosion Research Laboratory (LAPEC), Departament of Metallurgy, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil. )

Adilar Goncalves dos Santos Junior ( Corrosion Research Laboratory (LAPEC), Departament of Metallurgy, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil. )

Cristiano Campos Araujo ( Corrosion Research Laboratory (LAPEC), Departament of Metallurgy, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil. )

Celia de Fraga Malfatti ( Corrosion Research Laboratory (LAPEC), Departament of Metallurgy, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil. )

https://doi.org/10.37155/2717-526X-0501-6

Abstract

Pseudocapacitive supercapacitors have emerged as an important alternative to storage electrochemical energy. Among the several possible configurations of material for electrodes and electrolyte composition, the combination of oxides containing niobium and electrolytes based on sodium-ion has been presented as a very promising set. This review summarizes the main advances in the development of supercapacitors that use the Nb oxide - sodium-ion system. The electrochemical energy storage mechanisms are described and the influence of the type of electrolyte (aqueous or non-aqueous) is discussed. It was possible to verify that non-aqueous electrolytes are widely more used to assemble the Nb oxide - sodium-ion arrangements. For these systems the energy storage is controlled by the mechanism of intercalation/deintercalation of sodium-ions in the oxide structure. Despite non-aqueous electrolytes exhibit the advantage of operating in a wider window potential, they have disadvantages such as low electrical conductivity and sluggish Na+ kinetics. To overcome these aspects, works in the field have generally focused on improving the properties of the oxides, especially concerning its conductivity through core@shell systems, composites or doping. On the other hand, few studies were found in the literature concerning the Nb oxide - sodium-ion systems that use aqueous electrolytes. Nevertheless, these works showed promising results such as an expansion of the potential window usually used in aqueous electrolytes or the possibility to apply the Nb oxide as cathode or anode.

Keywords

Energy storage; Supercapacitor; Niobium-based oxides; Sodium-ion supercapacitors; Pseudocapacitor

Full Text

PDF

References

[1] Barnhart CJ, Dale M, Brandt AR, et al. The energetic implications of curtailing versus storing solar-and wind-generated electricity. Energy & Environmental Science, 2013;6(10):2804-2810. https://doi.org/10.1039/C3EE41973H
[2] Hannan MA, Hoque MM, Mohamed A, et al. Review of energy storage systems for electric vehicle applications: issues and challenges. Renewable and Sustainable Energy Reviews, 2017;69:771-789. https://doi.org/10.1016/j.rser.2016.11.171
[3] Tamor MA and Stechel EB. Electrification of transportation means a lot more than a lot more electric vehicles. Iscience, 2022;25(6):104376. https://doi.org/10.1016/j.isci.2022.104376
[4] Liang Y, Zhao CZ, Yuan H, et al. A review of rechargeable batteries for portable electronic devices. InfoMat, 2019;1(1):6-32. https://doi.org/10.1002/inf2.12000
[5] Chen W, Liang J, Yang Z, et al. A review of lithium-ion battery for electric vehicle applications and beyond. Energy Procedia, 2019;158:4363-4368. https://doi.org/10.1016/j.egypro.2019.01.783
[6] Şahin ME, Blaabjerg F and Sangwongwanich A. A comprehensive review on supercapacitor applications and developments. Energies, 2022;15(3):674. https://doi.org/10.3390/en15030674
[7] Kötz R and Carlen M. Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000;45(15-16):2483-2498. https://doi.org/10.1016/S0013-4686(00)00354-6
[8] González A, Goikolea E, Barrena JA, et al. Review on supercapacitors: technologies and materials. Renewable and Sustainable Energy Reviews, 2016;58:1189-1206. https://doi.org/10.1016/j.rser.2015.12.249
[9] Beguin F, Frackowiak E and Lu M, Supercapacitors: materials, systems and applications. Wiley-VCH, Weinheim; 2012. https://doi.org/10.1002/9783527646661
[10] Brezesinski K, Wang J, Haetge J, et al. Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. Journal of the American Chemical Society, 2010;132(20):6982-6990. https://doi.org/10.1021/ja9106385
[11] Yi TF, Sari HMK, Li X, et al. A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors. Nano Energy, 2021;85:105955. https://doi.org/10.1016/j.nanoen.2021.105955
[12] Upadhyay KK, Cha G, Hildebrand H, et al. Capacitance response in an aqueous electrolyte of Nb2O5 nanochannel layers anodically grown in pure molten o-H3PO4. Electrochimica Acta, 2018;281:725-737. https://doi.org/10.1016/j.electacta.2018.06.014
[13] Gomes MAB, Bulhões LOS, De Castro SC, et al. The electrochromic process at Nb2O5 electrodes prepared by thermal oxidation of Niobium. Journal of the Electrochemical Society, 1990;137(10):3067. https://doi.org/10.1149/1.2086161
[14] Thangavel R, Ganesan BK, Thangavel V, et al. Emerging materials for sodium-ion hybrid capacitors: a brief review. ACS Applied Energy Materials, 2021;4(12):13376-13394. https://doi.org/10.1021/acsaem.1c02099
[15] Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries. Chemical Reviews, 2014;114(23):11636-11682. https://doi.org/10.1021/cr500192f
[16] Conway BE. Electrochemical supercapacitors. 1st ed. Boston: Springer; 1999. http://dx.doi.org/10.1007/978-1-4757-3058-6
[17] Conway BE and Gileadi E. Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage. Transactions of the Faraday Society, 1962;58:2493-2509. https://doi.org/10.1039/TF9625802493
[18] Fleischmann S, Mitchell JB, Wang R, et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chemical Reviews, 2020;120(14):6738-6782. https://doi.org/10.1021/acs.chemrev.0c00170
[19] Augustyn V, Simon P and Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 2014;7(5):1597-1614. https://doi.org/10.1039/C3EE44164D
[20] Liu Y, Jiang SP and Shao Z. Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development. Materials Today Advances, 2020;7:100072. https://doi.org/10.1016/j.mtadv.2020.100072
[21] Chang BY, Ahn E and Park SM. Real-time staircase cyclic voltammetry fourier transform electrochemical impedance spectroscopic studies on underpotential deposition of lead on gold. The Journal of Physical Chemistry C, 2008;112(43):16902-16909. https://doi.org/10.1021/jp805960j
[22] Lou S, Cheng X, Wang L, et al. High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance. Journal of Power Sources, 2017;361:80-86. https://doi.org/10.1016/j.jpowsour.2017.06.023
[23] Chen C, Wen Y, Hu X, et al. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nature Communications, 2015;6(1):6929. https://doi.org/10.1038/ncomms7929
[24] Wei Q, Huang T, Huang X, et al. High‐rate sodium‐ion storage of vanadium nitride via surface‐redox pseudocapacitance. Interdisciplinary Materials, 2023;2(3):434-442. https://doi.org/10.1002/idm2.12080
[25] Zhao S, Liu Z, Xie G, et al. Achieving high‐performance 3D K+‐pre‐intercalated Ti3C2Tx MXene for potassium‐ion hybrid capacitors via regulating electrolyte solvation structure. Angewandte Chemie International Edition, 2021;60(50):26246-26253. https://doi.org/10.1002/anie.202112090
[26] Reeves KG, Ma J, Fukunishi M, et al. Insights into Li+, Na+, and K+ intercalation in lepidocrocite-type layered TiO2 structures. ACS Applied Energy Materials, 2018;1(5):2078-2086. https://doi.org/10.1021/acsaem.8b00170
[27] Xu Z, Liu Y, Zhou W, et al. B-site cation-ordered double-perovskite oxide as an outstanding electrode material for supercapacitive energy storage based on the anion intercalation mechanism. ACS Applied Materials & Interfaces, 2018;10(11):9415-9423. https://doi.org/10.1021/acsami.7b19391
[28] Che W, Wei M, Sang Z, et al. Perovskite LaNiO3-δ oxide as an anion-intercalated pseudocapacitor electrode. Journal of Alloys and Compounds, 2018;731:381-388. https://doi.org/10.1016/j.jallcom.2017.10.027
[29] Sampaio EJP, Antonini LM, dos Santos Júnior AG, et al. Highly ordered nanotubular niobium oxide obtained by self-organizing anodization: a study of capacitive behavior. Ceramics International, 2022;48(17):25424-25430. https://doi.org/10.1016/j.ceramint.2022.05.219
[30] Wang Z, Su H, Liu F, et al. Establishing highly-efficient surface faradaic reaction in flower-like NiCo2O4 nano-/micro-structures for next-generation supercapacitors. Electrochimica Acta, 2019;307:302-309. https://doi.org/10.1016/j.electacta.2019.03.227
[31] Pandolfo AG and Hollenkamp AF. Carbon properties and their role in supercapacitors. Journal of Power Sources, 2006;157(1):11-27. https://doi.org/10.1016/j.jpowsour.2006.02.065
[32] Gu W and Yushin G. Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide‐derived carbon, zeolite‐templated carbon, carbon aerogels, carbon nanotubes, onion‐like carbon, and graphene. Wiley Interdisciplinary Reviews: Energy and Environment, 2014;3(5):424-473. https://doi.org/10.1002/wene.102
[33] Liang R, Du Y, Xiao P, et al. Transition metal oxide electrode materials for supercapacitors: a review of recent developments. Nanomaterials, 2021;11(5):1248. https://doi.org/10.3390/nano11051248
[34] Abdah MAAM and Azman NHN, Kulandaivalu S, et al. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Materials & Design, 2020;186:108199. https://doi.org/10.1016/j.matdes.2019.108199
[35] Breitkopf C and Swider-Lyons K. Springer handbook of electrochemical energy. 1st ed. Berlin: Springer; 2017. https://doi.org/10.1007/978-3-662-46657-5
[36] Kim JW, Augustyn V and Dunn B. The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Advanced Energy Materials, 2012;2(1):141-148. https://doi.org/10.1002/aenm.201100494
[37] Ramachandran R and Wang F. Electrochemical capacitor performance: influence of aqueous electrolytes. 1st ed. In: Liudvinavičius L (editor). Supercapacitors-theoretical and practical solutions. London: IntechOpen; 2018. p. 51-68. https://doi.org/10.5772/intechopen.70694
[38] Wu X, Yang H, Yu M, et al. Design principles of high-voltage aqueous supercapacitors. Materials Today Energy, 2021;21:100739. https://doi.org/10.1016/j.mtener.2021.100739
[39] Endo M, Takeda T, Kim YJ, et al. High power electric double layer capacitor (EDLC's); from operating principle to pore size control in advanced activated carbons. Carbon Letters, 2001;1(3_4):117-128.
[40] Zhong C, Deng Y, Hu W, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015;44(21):7484-7539. https://doi.org/10.1039/C5CS00303B
[41] Liu M, Ao H, Jin Y, et al. Aqueous rechargeable sodium ion batteries: Developments and prospects. Materials Today Energy, 2020;17:100432. https://doi.org/10.1016/j.mtener.2020.100432
[42] Fic K, Lota G, Meller M, et al. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy & Environmental Science, 2012;5(2):5842-5850. https://doi.org/10.1039/C1EE02262H
[43] Liu Y, Wang Z, Veder JPM, et al. Highly defective layered double perovskite oxide for efficient energy storage via reversible pseudocapacitive oxygen‐anion intercalation. Advanced Energy Materials, 2018;8(11):1702604. https://doi.org/10.1002/aenm.201702604
[44] Ramasamy HV, Kaliyappan K, Thangavel R, et al. Efficient method of designing stable layered cathode material for sodium ion batteries using aluminum doping. The Journal of Physical Chemistry Letters, 2017;8(20):5021-5030. https://doi.org/10.1021/acs.jpclett.7b02012
[45] Thangavel R, Samuthira Pandian A, Ramasamy HV, et al. Rapidly synthesized, few-layered pseudocapacitive SnS2 anode for high-power sodium ion batteries. ACS Applied Materials & Interfaces, 2017;9(46):40187-40196. https://doi.org/10.1021/acsami.7b11040
[46] Chen Z, Augustyn V, Jia X, et al. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano, 2012;6(5):4319-4327. https://doi.org/10.1021/nn300920e
[47] Zhang Y, Jiang J, An Y, et al. Sodium‐ion capacitors: materials, mechanism, and challenges. ChemSusChem, 2020;13(10):2522-2539. https://doi.org/10.1002/cssc.201903440
[48] Kuratani K, Yao M, Senoh H, et al. Na-ion capacitor using sodium pre-doped hard carbon and activated carbon. Electrochimica Acta, 2012;76:320-325. https://doi.org/10.1016/j.electacta.2012.05.040
[49] Ajuria J, Redondo E, Arnaiz M, et al. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits. Journal of Power Sources, 2017;359:17-26. https://doi.org/10.1016/j.jpowsour.2017.04.107
[50] Kado Y and Soneda Y. MgO-templated carbon as a negative electrode material for Na-ion capacitors. Journal of Physics and Chemistry of Solids, 2016;99:167-172. https://doi.org/10.1016/j.jpcs.2016.08.021
[51] Wang R, Wang S, Peng X, et al. Elucidating the intercalation pseudocapacitance mechanism of MoS2–carbon monolayer interoverlapped superstructure: toward high-performance sodium-ion-based hybrid supercapacitor. ACS Applied Materials & Interfaces, 2017;9(38):32745-32755. https://doi.org/10.1021/acsami.7b09813
[52] Li Y, Wang H, Wang L, et al. Ultrafast Na+-storage in TiO2-coated MoS2@ N-doped carbon for high-energy sodium-ion hybrid capacitors. Energy Storage Materials, 2019;23:95-104. https://doi.org/10.1016/j.ensm.2019.05.024
[53] Cui J, Yao S, Lu Z, et al. Revealing pseudocapacitive mechanisms of metal dichalcogenide SnS2/graphene-CNT aerogels for high-energy Na hybrid capacitors. Advanced Energy Materials, 2018;8(10):1702488. https://doi.org/10.1002/aenm.201702488
[54] Le Z, Liu F, Nie P, et al. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano, 2017;11(3):2952-2960. https://doi.org/10.1021/acsnano.6b08332
[55] Zhu YE, Yang L, Sheng J, et al. Fast sodium storage in TiO2@CNT@C nanorods for high‐performance Na‐ion capacitors. Advanced Energy Materials, 2017;7(22):1701222. https://doi.org/10.1002/aenm.201701222
[56] Babu B and Shaijumon MM. High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures. Journal of Power Sources, 2017;353:85-94. https://doi.org/10.1016/j.jpowsour.2017.03.143
[57] Thangavel R, Kaliyappan K, Kim DU, et al. All-organic sodium hybrid capacitor: a new, high-energy, high-power energy storage system bridging batteries and capacitors. Chemistry of Materials, 2017;29(17):7122-7130. https://doi.org/10.1021/acs.chemmater.7b00841
[58] Thangavel R, Ponraj R, Kannan AG, et al. High performance organic sodium-ion hybrid capacitors based on nano-structured disodium rhodizonate rivaling inorganic hybrid capacitors. Green Chemistry, 2018;20(21):4920-4931. https://doi.org/10.1039/C8GC01987H
[59] Ding J, Hu W, Paek E, et al. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chemical Reviews, 2018;118(14):6457-6498. https://doi.org/10.1021/acs.chemrev.8b00116
[60] Lim E, Jo C, Kim MS, et al. High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites. Advanced Functional Materials, 2016;26(21):3711-3719. https://doi.org/10.1002/adfm.201505548
[61] Li H, Zhu Y, Dong S, et al. Self-assembled Nb2O5 nanosheets for high energy-high power sodium ion capacitors. Chemistry of Materials, 2016;28(16):5753-5760. https://doi.org/10.1021/acs.chemmater.6b01988
[62] Tong Z, Liu S, Zhou Y, et al. Rapid redox kinetics in uniform sandwich-structured mesoporous Nb2O5/graphene/mesoporous Nb2O5 nanosheets for high-performance sodium-ion supercapacitors. Energy Storage Materials, 2018;13:223-232. https://doi.org/10.1016/j.ensm.2017.12.005
[63] Wu Y, Fan X, Gaddam RR, et al. Mesoporous niobium pentoxide/carbon composite electrodes for sodium-ion capacitors. Journal of Power Sources, 2018;408:82-90. https://doi.org/10.1016/j.jpowsour.2018.10.080
[64] Wang X, Li Q, Zhang L, et al. Caging Nb2O5 nanowires in PECVD‐derived graphene capsules toward bendable sodium‐ion hybrid supercapacitors. Advanced Materials, 2018;30(26):1800963. https://doi.org/10.1002/adma.201800963
[65] Li Y, Wang H, Wang L, et al. Mesopore‐induced ultrafast Na+-storage in T-Nb2O5/carbon nanofiber films toward flexible high‐power Na‐ion capacitors. Small, 2019;15(9):1804539. https://doi.org/10.1002/smll.201804539
[66] Wu Y, Fan X, Chen Y, et al. Fluorine substitution enabling pseudocapacitive intercalation of sodium ions in niobium oxyfluoride. Journal of Materials Chemistry A, 2019;7(36):20813-20823. https://doi.org/10.1039/C9TA07320E
[67] Jia R, Jiang Y, Li R, et al. Nb2O5 nanotubes on carbon cloth for high performance sodium-ion capacitors. Science China Materials, 2020;63(7):1171-1181. https://doi.org/10.1007/s40843-020-1278-9
[68] She L, Li Q, Zhang F, et al. Sulfur doping induced anionic oxidation of niobium-pentoxide-based anode for ultralong-life and high energy-density Na-ion capacitors. Journal of Power Sources, 2020;451:227744. https://doi.org/10.1016/j.jpowsour.2020.227744
[69] Real CG, Thaines EHNS, Pocrifka LA, et al. Freestanding niobium pentoxide-decorated multiwalled carbon nanotube electrode: Charge storage mechanism in sodium-ion pseudocapacitor and battery. Journal of Energy Storage, 2022;52:104793. https://doi.org/10.1016/j.est.2022.104793
[70] Idrees F, Hou J, Cao C, et al. Template-free synthesis of highly ordered 3D-hollow hierarchical Nb2O5 superstructures as an asymmetric supercapacitor by using inorganic electrolyte. Electrochimica Acta, 2016;216:332-338. https://doi.org/10.1016/j.electacta.2016.09.031
[71] dos Santos Júnior AG, Antonini LM, Sampaio EJP, et al. Sodium niobates and protonic niobates nanowires obtained from hydrothermal synthesis: electrochemical behavior in aqueous electrolyte. Ceramics International, 2022;48(2):1522-1531. https://doi.org/10.1016/j.ceramint.2021.09.230
[72] Deng Q, Fu Y, Zhu C, et al. Niobium-based oxides toward advanced electrochemical energy storage: recent advances and challenges. Small, 2019;15(32):1804884. https://doi.org/10.1002/smll.201804884
[73] Viet AL, Reddy MV, Jose R, et al. Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. The Journal of Physical Chemistry C, 2010;114(1):664-671. https://doi.org/10.1021/jp9088589
[74] Yan L, Rui X, Chen G, et al. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage. Nanoscale, 2016;8(16):8443-8465. https://doi.org/10.1039/C6NR01340F
[75] Ge H, Li N, Li D, et al. Study on the theoretical capacity of spinel lithium titanate induced by low-potential intercalation. The Journal of Physical Chemistry C, 2009;113(16):6324-6326. https://doi.org/10.1021/jp9017184
[76] Madian M, Eychmüller A and Giebeler L. Current advances in TiO2-based nanostructure electrodes for high performance lithium ion batteries. Batteries, 2018;4(1):7. https://doi.org/10.3390/batteries4010007
[77] Chen D, Wang JH, Chou TF, et al. Unraveling the nature of anomalously fast energy storage in T-Nb2O5. Journal of the American Chemical Society, 2017;139(20):7071-7081. https://doi.org/10.1021/jacs.7b03141
[78] Hu L, Luo L, Tang L, et al. Ti2Nb2xO4+5x anode materials for lithium-ion batteries: a comprehensive review. Journal of Materials Chemistry A, 2018;6(21):9799-9815. https://doi.org/10.1039/C8TA00895G
[79] Nico C, Monteiro T and Graça MPF. Niobium oxides and niobates physical properties: review and prospects. Progress in Materials Science, 2016;80:1-37. https://doi.org/10.1016/j.pmatsci.2016.02.001
[80] Lim E, Kim H, Jo C, et al. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano, 2014;8(9):8968-8978. https://doi.org/10.1021/nn501972w
[81] Kim H, Lim E, Jo C, et al. Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. Nano Energy, 2015;16:62-70. https://doi.org/10.1016/j.nanoen.2015.05.015
[82] Yan L, Chen G, Sarker S, et al. Ultrafine Nb2O5 nanocrystal coating on reduced graphene oxide as anode material for high performance sodium ion battery. ACS Applied Materials & Interfaces, 2016;8(34):22213-22219. https://doi.org/10.1021/acsami.6b06516
[83] Da Silva LM, Cesar R, Moreira CMR, et al. Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials. Energy Storage Materials, 2020;27:555-590. https://doi.org/10.1016/j.ensm.2019.12.015
[84] Xie J, Yang P, Wang Y, et al. Puzzles and confusions in supercapacitor and battery:theory and solutions. Journal of Power Sources, 2018;401:213-223. https://doi.org/10.1016/j.jpowsour.2018.08.090
[85] Xie K, Wei W, Yu H, et al. Use of a novel layered titanoniobate as an anode material for long cycle life sodium ion batteries. RSC Advances, 2016;6(42):35746-35750. https://doi.org/10.1039/C6RA02530G
[86] Li S, Cao X, Schmidt CN, et al. TiNb2O7/graphene composites as high-rate anode materials for lithium/sodium ion batteries. Journal of Materials Chemistry A, 2016;4(11):4242-4251. https://doi.org/10.1039/C5TA10510B
[87] Shen L, Wang Y, Lv H, et al. Ultrathin Ti2Nb2O9 nanosheets with pseudocapacitive properties as superior anode for sodium‐ion batteries. Advanced Materials, 2018;30(51):1804378. https://doi.org/10.1002/adma.201804378
[88] Wang L, Bi X and Yang S. Synergic antimony-niobium pentoxide nanomeshes for high-rate sodium storage. Journal of Materials Chemistry A, 2018;6(15):6225-6232. https://doi.org/10.1039/C8TA01130C

Copyright © 2023 Edna Jerusa Pacheco Sampaio, Adilar Goncalves dos Santos Junior, Cristiano Campos Araujo, Celia de Fraga Malfatti Creative Commons License Publishing time:2023-03-10
This work is licensed under a Creative Commons Attribution 4.0 International License