The Effect of Ultrasonic Cavitation on Surficial Properties of Metals and Industrial Processes
Haitao Zheng ( Energy Centre, Council for Scientific and Industrial Research (CSIR), POBOX 395, Pretoria 0001, South Africa. )
Mkhulu Mathe ( University of South Africa (Unisa) Florida Campus, 28 Pioneer Ave, Florida Park, Roodepoort 1709, South Africa. )
https://doi.org/10.37155/2717-526X-0501-5Abstract
Ultrasonic cavitation is a phenomenon that occurs when high-frequency sound waves are introduced into a liquid medium, causing the formation and collapse of small bubbles within the liquid. These bubbles generate high-energy shock waves that can change the surface of nearby materials, leading to various physical and chemical effects. In this review, we briefly summarized the influence of ultrasonic cavitation on the surficial properties of metals and some industrial processes, particularly focusing on the effects of surface roughness, surface cleaning, and surface activation/modification and surface corrosion.
Keywords
Ultrasonic; Cavitation; Effect; Metal; Industrial processFull Text
PDFReferences
[2] Yao C, Zhao S, Liu L, et al. Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application. Frontiers of Chemical Science and Engineering, 2022;16(11):1560-1583. https://doi.org/10.1007/s11705-022-2160-4
[3] Marcantonio V, Monarca D, Colantoni A, et al. Ultrasonic waves for materials evaluation in fatigue, thermal and corrosion damage: a review. Mechanical Systems and Signal Processing, 2019;120:32-42. https://doi.org/10.1016/j.ymssp.2018.10.012
[4] Singh R and Khamba JS. Ultrasonic machining of titanium and its alloys: a review. Journal of Materials Processing Technology, 2006;173(2):125-135. https://doi.org/10.1016/j.jmatprotec.2005.10.027
[5] Baesso RM, Costa-Felix RPB, Miloro P, et al. Ultrasonic parameter measurement as a means of assessing the quality of biodiesel production. Fuel, 2019;241:155-163. https://doi.org/10.1016/j.fuel.2018.12.032
[6] Matseke MS, Zheng H and Wang Y. The ultrasonication boosts the surface properties of CoFe2O4/C nanoparticles towards ORR in alkaline media. Applied Surface Science, 2020;516:146105. https://doi.org/10.1016/j.apsusc.2020.146105
[7] Shchukin DG, Skorb E, Belova V, et al. Ultrasonic cavitation at solid surfaces. Advanced Materials, 2011;23(17):1922-1934. https://doi.org/10.1002/adma.201004494
[8] Munonde TS and Zheng H. The impact of ultrasonic parameters on the exfoliation of NiFe LDH nanosheets as electrocatalysts for the oxygen evolution reaction in alkaline media. Ultrasonics Sonochemistry, 2021;76:105664. https://doi.org/10.1016/j.ultsonch.2021.105664
[9] Suslick KS and Flannigan DJ. Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annual Review of Physical Chemistry, 2008;59:659-683. https://doi.org/10.1146/annurev.physchem.59.032607.093739
[10] Skorb EV and Moehwald H. Ultrasonic approach for surface nanostructuring. Ultrasonics Sonochemistry, 2016;29:589-603. https://doi.org/10.1016/j.ultsonch.2015.09.003
[11] Suslick KS. Sonochemistry. Science, 1990;247(4949):1439-1445. https://doi.org/10.1126/science.247.4949.1439
[12] Rooze J, Rebrov EV, Schouten JC, et al. Dissolved gas and ultrasonic cavitation-a review. Ultrasonics Sonochemistry, 2013;20(1):1-11. https://doi.org/10.1016/j.ultsonch.2012.04.013
[13] Yasui K. Dynamics of acoustic bubbles. In: Grieser F, Choi PK, Enomoto N, Harada H, Okitsu K, Yasui K (editors). Sonochemistry and the acoustic bubble. Amsterdam: Elsevier; 2015. pp. 41-83. https://doi.org/10.1016/B978-0-12-801530-8.00003-7
[14] Alarcon-Rojo AD, Carrillo-Lopez LM, Reyes-Villagrana R, et al. Ultrasound and meat quality: a review. Ultrasonics Sonochemistry, 2019;55:369-382. https://doi.org/10.1016/j.ultsonch.2018.09.016
[15] Gungoren C, Ozdemir O, Wang X, et al. Effect of ultrasound on bubble-particle interaction in quartz-amine flotation system. Ultrasonics Sonochemistry, 2019;52:446-454. https://doi.org/10.1016/j.ultsonch.2018.12.023
[16] Sedlaczek J, Lohmann CH, Lotz EM, et al. Effects of low‐frequency ultrasound treatment of titanium surface roughness on osteoblast phenotype and maturation. Clinical Oral Implants Research, 2017;28(10):e151-e158. https://doi.org/10.1111/clr.12976
[17] Udepurkar AP, Clasen C and Kuhn S. Emulsification mechanism in an ultrasonic microreactor: influence of surface roughness and ultrasound frequency. Ultrasonics Sonochemistry, 2023;94:106323. https://doi.org/10.1016/j.ultsonch.2023.106323
[18] Verdan S, Burato G, Comet M, et al. Structural changes of metallic surfaces induced by ultrasound. Ultrasonics Sonochemistry, 2003;10(4-5):291-295. https://doi.org/10.1016/S1350-4177(03)00106-8
[19] Li X and Yang H. Bulk micromachining. 3D and Circuit Integration of MEMS, 2021;13-48. https://doi.org/10.1002/9783527823239.ch2
[20] Pal P, Swarnalatha V, Rao AVN, et al. High speed silicon wet anisotropic etching for applications in bulk micromachining: a review. Micro and Nano Systems Letters, 2021;9:1-59. https://doi.org/10.1186/s40486-021-00129-0
[21] Jiao Q, Tan X, Zhu J, et al. Effects of ultrasonic agitation and surfactant additive on surface roughness of Si (1 1 1) crystal plane in alkaline KOH solution. Ultrasonics Sonochemistry, 2016;31:222-226. https://doi.org/10.1016/j.ultsonch.2015.12.019
[22] Swarnalatha V, Vismaya KT, Rao AVN, et al. Etching mechanism behind the high-speed etching of silicon in NH2OH-added alkaline solutions. IEEJ Transactions on Sensors and Micromachines, 2020;140(1):24-30. https://doi.org/10.1541/ieejsmas.140.24
[23] Yang CR, Chen PY, Chiou YC, et al. Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution. Sensors and Actuators A: Physical, 2005;119(1):263-270. https://doi.org/10.1016/j.sna.2004.07.015
[24] Chen J, Liu L, Li Z, et al. Study of anisotropic etching of (1 0 0) Si with ultrasonic agitation. Sensors and Actuators A: Physical, 2002;96(2-3):152-156. https://doi.org/10.1016/S0924-4247(01)00786-5
[25] Unursaikhan O, Lee JS, Cha JK, et al. Comparative evaluation of roughness of titanium surfaces treated by different hygiene instruments. Journal of Periodontal & Implant Science, 2012;42(3):88-94. https://doi.org/10.5051/jpis.2012.42.3.88
[26] Sato S, Kishida M and Ito K. The comparative effect of ultrasonic scalers on titanium surfaces: an in vitro study. Journal of Periodontology, 2004;75(9):1269-1273. https://doi.org/10.1902/jop.2004.75.9.1269
[27] Zhao W, Liu D, Zhang X, et al. Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process. International Journal of Fatigue, 2019;121:30-38. https://doi.org/10.1016/j.ijfatigue.2018.11.017
[28] Li L, Kim M, Lee S, et al. Influence of multiple ultrasonic impact treatments on surface roughness and wear performance of SUS301 steel. Surface and Coatings Technology, 2016;307:517-524. https://doi.org/10.1016/j.surfcoat.2016.09.023
[29] Zhang H, Chiang R, Qin H, et al. The effects of ultrasonic nanocrystal surface modification on the fatigue performance of 3D-printed Ti64. International Journal of Fatigue, 2017;103:136-146. https://doi.org/10.1016/j.ijfatigue.2017.05.019
[30] Ma C, Andani MT, Qin H, et al. Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification. Journal of Materials Processing Technology, 2017;249:433-440. https://doi.org/10.1016/j.jmatprotec.2017.06.038
[31] Kadivar MA, Akbari J, Yousefi R, et al. Investigating the effects of vibration method on ultrasonic-assisted drilling of Al/SiCp metal matrix composites. Robotics and Computer-Integrated Manufacturing, 2014;30(3):344-350. https://doi.org/10.1016/j.rcim.2013.10.001
[32] Low ZL, Low DYS, Tang SY, et al. Ultrasonic cavitation: an effective cleaner and greener intensification technology in the extraction and surface modification of nanocellulose. Ultrasonics Sonochemistry, 2022;90:106176. https://doi.org/10.1016/j.ultsonch.2022.106176
[33] Rodič P and Milošev I. One-step ultrasound fabrication of corrosion resistant, self-cleaning and anti-icing coatings on aluminium. Surface and Coatings Technology, 2019;369:175-185. https://doi.org/10.1016/j.surfcoat.2019.03.082
[34] Thombre NV, Gadhekar AP, Patwardhan AV, et al. Ultrasound induced cleaning of polymeric nanofiltration membranes. Ultrasonics Sonochemistry, 2020;62:104891. https://doi.org/10.1016/j.ultsonch.2019.104891
[35] Ünver A. Applications of ultrasound in food processing. Green Chemical and Technological Letters, 2016;2(3):121-126. https://doi.org/10.18510/gctl.2016.231
[36] Astráin-Redín L, Raso J, Condón S, et al. Application of high-power ultrasound in the food industry. In: Karakuş S (editor). Sonochemical reactions. London: IntechOpen; 2019. https://doi.org/10.5772/intechopen.90444
[37] Dolatowski ZJ, Stadnik J and Stasiak D. Applications of ultrasound in food technology. Acta Scientiarum Polonorum Technologia Alimentaria, 2007;6(3):88-99.
[38] Xu B, Azam SMR, Feng M, et al. Application of multi-frequency power ultrasound in selected food processing using large-scale reactors: a review. Ultrasonics Sonochemistry, 2021;81:105855. https://doi.org/10.1016/j.ultsonch.2021.105855
[39] Farmer AD, Collings AF and Jameson GJ. The application of power ultrasound to the surface cleaning of silica and heavy mineral sands. Ultrasonics Sonochemistry, 2000;7(4):243-247. https://doi.org/10.1016/S1350-4177(00)00057-2
[40] Farmer AD, Collings AF and Jameson GJ. Effect of ultrasound on surface cleaning of silica particles. International Journal of Mineral Processing, 2000;60(2):101-113. https://doi.org/10.1016/S0301-7516(00)00009-0
[41] Ozkan SG. Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes. Fuel, 2012;93:576-580. https://doi.org/10.1016/j.fuel.2011.10.032
[42] Ozkan SG and Kuyumcu HZ. Investigation of mechanism of ultrasound on coal flotation. International Journal of Mineral Processing, 2006;81(3):201-203. https://doi.org/10.1016/j.minpro.2006.07.011
[43] Mao Y, Xia W, Peng Y, et al. Ultrasonic-assisted flotation of fine coal: a review. Fuel Processing Technology, 2019;195:106150. https://doi.org/10.1016/j.fuproc.2019.10615
[44] Chen Y, Truong VNT, Bu X, et al. A review of effects and applications of ultrasound in mineral flotation. Ultrasonics Sonochemistry, 2020;60:104739. https://doi.org/10.1016/j.ultsonch.2019.104739
[45] Gotoh K, Harayama K and Handa K. Combination effect of ultrasound and shake as a mechanical action for textile cleaning. Ultrasonics Sonochemistry, 2015;22:412-421. https://doi.org/10.1016/j.ultsonch.2014.05.005
[46] Gotoh K and Harayama K. Application of ultrasound to textiles washing in aqueous solutions. Ultrasonics Sonochemistry, 2013;20(2):747-753. https://doi.org/10.1016/j.ultsonch.2012.10.001
[47] Mason TJ. Ultrasonic cleaning: an historical perspective. Ultrasonics Sonochemistry, 2016;29:519-523. https://doi.org/10.1016/j.ultsonch.2015.05.004
[48] Ozkan SG. Further investigations on simultaneous ultrasonic coal flotation. Minerals, 2017;7(10):177. https://doi.org/10.3390/min7100177
[49] Sun N, Zhu B, Gao X, et al. Improved the interfacial characteristics of carbon fiber/polyamide 6 composites by synthesizing polydopamine rapidly on the carbon fiber surface with ultrasound-assisted. Composites Science and Technology, 2023;234:109950. https://doi.org/10.1016/j.compscitech.2023.109950
[50] Yan L, Chen W, Li H, et al. Mechanism of ultrasonic vibration effects on adhesively bonded ceramic matrix composites joints. Ceramics International, 2021;47(23):33214-33222. https://doi.org/10.1016/j.ceramint.2021.08.222
[51] Wang H, Zhang Q, Chen Y, et al. Effect of ultrasonic vibration on adhesive enhancement of plasma-modified nickel surface. Ultrasonics Sonochemistry, 2022;89:106126. https://doi.org/10.1016/j.ultsonch.2022.106126
[52] Kishore A, John M, Ralls AM, et al. Ultrasonic nanocrystal surface modification: processes, characterization, properties, and applications. Nanomaterials, 2022;12(9):1415. https://doi.org/10.3390/nano12091415
[53] Vitry V and Bonin L. Effect of temperature on ultrasound-assisted electroless nickel-boron plating. Ultrasonics Sonochemistry, 2019;56:327-336. https://doi.org/10.1016/j.ultsonch.2019.04.027
[54] Chiu WK, Fracol M, Feld LN, et al. Judging an expander by its cover: a propensity-matched analysis of the impact of tissue expander surface texture on first-stage breast reconstruction outcomes. Plastic and Reconstructive Surgery, 2021;147(1):1e-6e. https://doi.org/10.1097/PRS.0000000000007417
[55] Aslam R, Alam MS, Kaur J, et al. Understanding the effects of ultrasound processng on texture and rheological properties of food. Journal of Texture Studies, 2022;53(6):775-799. https://doi.org/10.1111/jtxs.12644
[56] Paris JL and Vallet-Regí M. Ultrasound-activated nanomaterials for therapeutics. Bulletin of the Chemical Society of Japan, 2020;93(2):220-229. https://doi.org/10.1246/bcsj.20190346
[57] Bulychev NA. Obtaining nanosized materials in plasma discharge and ultrasonic cavitation. High Temperature, 2022;60(Suppl 1):S98-S126. https://doi.org/10.1134/S0018151X21040076
[58] Yamashita T and Ando K. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: role of cavitation bubbles as physical cleaning agents. Ultrasonics Sonochemistry, 2019;52:268-279. https://doi.org/10.1016/j.ultsonch.2018.11.025
[59] Munonde TS, Zheng H, Matseke MS, et al. A green approach for enhancing the electrocatalytic activity and stability of NiFe2O4/CB nanospheres towards hydrogen production. Renewable Energy, 2020;154:704-714. https://doi.org/10.1016/j.renene.2020.03.022
[60] Munonde TS, Zheng H and Nomngongo PN. Ultrasonic exfoliation of NiFe LDH/CB nanosheets for enhanced oxygen evolution catalysis. Ultrasonics Sonochemistry, 2019;59:104716. https://doi.org/10.1016/j.ultsonch.2019.104716
[61] Lahiri S, Mandal D, Biswas S, et al. Sonocatalytic recovery of ceria from graphite and inhibition of graphite erosion by ionic liquid based platinum nanocatalyst. Ultrasonics Sonochemistry, 2022;82:105863. https://doi.org/10.1016/j.ultsonch.2021.105863
[62] Moutarlier V, Viennet R, Gigandet MP, et al. Use of ultrasound irradiation during acid etching of the 2024 aluminum alloy: effect on corrosion resistance after anodization. Ultrasonics Sonochemistry, 2020;64:104879. https://doi.org/10.1016/j.ultsonch.2019.104879
[63] Costa JM and de Almeida Neto AF. Electrodeposition of nickel-tungsten alloys under ultrasonic waves: Impact of ultrasound intensity on the anticorrosive properties. Ultrasonics Sonochemistry, 2021;73:105495. https://doi.org/10.1016/j.ultsonch.2021.105495
[64] Foong SY, Chan YH, Yiin CL, et al. Sustainable CO2 capture via adsorption by chitosan-based functional biomaterial: a review on recent advances, challenges, and future directions. Renewable and Sustainable Energy Reviews, 2023;181:113342. https://doi.org/10.1016/j.rser.2023.113342
[65] Ai X, Xie A, Cheng J, et al. Fabrication of robust and high resilient polythiophene conductive polyamides fibers based on tannic acid modification. Industrial & Engineering Chemistry Research, 2022;61(30):11025-11033. https://doi.org/10.1021/acs.iecr.2c01630
[66] Panahi HKS, Dehhaghi M, Ok YS, et al. A comprehensive review of engineered biochar: production, characteristics, and environmental applications. Journal of Cleaner Production, 2020;270:122462. https://doi.org/10.1016/j.jclepro.2020.122462
[67] Jia Z and Duan C. Preparation and characterization of surface modified ppta fibers by ultrasonic-assisted hydrogen peroxide solutions. Fibers and Polymers, 2019;20:2310-2316. https://doi.org/10.1007/s12221-019-9235-y
[68] Oakes BD. Cavitation corrosion. In: Ailor WH (editor). Engine Coolant Testing: State of the Art, ASTM STP 705. Philadelphia: American Society for Testing and Materials; 1980. pp. 284–294.
[69] Tian Y, Zhang H, Chen X, et al. Effect of cavitation on corrosion behavior of HVOF-sprayed WC-10Co4Cr coating with post-sealing in artificial seawater. Surface and Coatings Technology, 2020;397:126012. https://doi.org/10.1016/j.surfcoat.2020.126012
[70] Du J, Zhang J, Xu J, et al. Cavitation-corrosion behaviors of HVOF sprayed WC-25WB-10Co-5NiCr and MoB-25NiCr coatings. Ceramics International, 2020;46(13):21707-21718. https://doi.org/10.1016/j.ceramint.2020.05.279
[71] Wu CL, Zhang S, Zhang CH, et al. Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying. Journal of Alloys and Compounds, 2017;698:761-770. https://doi.org/10.1016/j.jallcom.2016.12.196
[72] Li L, Qiao Y, Zhang L, et al. Understanding the corrosion behavior of nickel–aluminum bronze induced by cavitation corrosion using electrochemical noise: selective phase corrosion and uniform corrosion. Materials, 2023;16(2):669. https://doi.org/10.3390/ma16020669
[73] Qin Z, Li X, Xia D, et al. Effect of compressive stress on cavitation erosion-corrosion behavior of nickel-aluminum bronze alloy. Ultrasonics Sonochemistry, 2022;89:106143. https://doi.org/10.1016/j.ultsonch.2022.106143
[74] Świetlicki A, Szala M and Walczak M. Effects of shot peening and cavitation peening on properties of surface layer of metallic materials-a short review. Materials, 2022;15(7):2476. https://doi.org/10.3390/ma15072476
[75] Krella AK. Degradation and protection of materials from cavitation erosion: a review. Materials, 2023;16(5):2058. https://doi.org/10.3390/ma16052058
[76] Neville A and McDougall BAB. Erosion-and cavitation-corrosion of titanium and its alloys. Wear, 2001;250(1-12):726-735. https://doi.org/10.1016/S0043-1648(01)00709-8
[77] Kwok CT, Man HC, Cheng FT, et al. Developments in laser-based surface engineering processes: with particular reference to protection against cavitation erosion. Surface and Coatings Technology, 2016;291:189-204. https://doi.org/10.1016/j.surfcoat.2016.02.019
[78] Dwivedi D, Lepková K and Becker T. Carbon steel corrosion: a review of key surface properties and characterization methods. RSC advances, 2017;7(8):4580-4610. https://doi.org/10.1039/C6RA25094G
[79] Qin Z, Li X, Xia DH, et al. The effect of compressive stress on cavitation-erosion corrosion behavior of 304 stainless steel. Anti-Corrosion Methods and Materials, 2022;69(4):434-441. https://doi.org/10.1108/ACMM-03-2022-2627
[80] Cao L, Qin Z, Deng Y, et al. Effect of passive film on cavitation corrosion behavior of 316L stainless steel. International Journal of Electrochemical Science, 2020;15(1):628-638. https://doi.org/10.20964/2020.01.51
[81] Zheng Z, Long J, Wang S, et al. Cavitation erosion-corrosion behaviour of Fe-10Cr martensitic steel microalloyed with Zr in 3.5% NaCl solution. Corrosion Science, 2021;184:109382. https://doi.org/10.1016/j.corsci.2021.109382
[82] Merah N, Abdul Azeem M, Abubaker HM, et al. Friction Stir processing influence on microstructure, mechanical, and corrosion behavior of steels: a review. Materials, 2021;14(17):5023. https://doi.org/10.3390/ma14175023
[83] Gupta C, Toda H, Mayr P, et al. 3D creep cavitation characteristics and residual life assessment in high temperature steels: a critical review. Materials Science and Technology, 2015;31(5):603-626.
[84] Bakhshandeh HR, Allahkaram SR and Zabihi AH. An investigation on cavitation-corrosion behavior of Ni/β-SiC nanocomposite coatings under ultrasonic field. Ultrasonics Sonochemistry, 2019;56:229-239. https://doi.org/10.1016/j.ultsonch.2019.04.022
[85] Selvam K, Saini J, Perumal G, et al. Exceptional cavitation erosion-corrosion behavior of dual-phase bimodal structure in austenitic stainless steel. Tribology International, 2019;134:77-86. https://doi.org/10.1016/j.triboint.2019.01.018
Copyright © 2023 Haitao Zheng, Mkhulu Mathe Publishing time:2023-03-10
This work is licensed under a Creative Commons Attribution 4.0 International License