Between the Electrodes of a Supercapacitor: An Update on Electrolytes

Rudolf Holze ( 1. State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China. 2. Chemnitz University of Technology, 09107 Chemnitz, Germany. 3. Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing 210096, China. 4. Saint Petersburg State University, Institute of Chemistry, St. Petersburg, 199034, Russia )

Abstract

Performance, in particular power capabilities and stability of the supercapacitor critically depend on the electrolyte: the ionically conducting phase between the electrodes of a supercapacitor. This review provides an overview with particular attention to possible practical perspectives and promising developments. It addresses all studied or suggested electrolyte systems, mentions relevant properties and highlights details possibly important for practical use or posing likely problems.

Keywords

Electrolytes; Electrolyte solutions; Solid electrolytes; Gel electrolytes; Ionic liquids; Deep eutectic solvents; Supercapacitors

Full Text

PDF

References

[1]Lilienfeld JE. Device for controlling current, US-patent US1,900,018, 28.03.1928.
[2]Ge Y, Xie X, Roscher J, Holze R, Qu Q. How to measure and report the capacity of electrochemical double layers, supercapacitors, and their electrode materials. J. Solid State Electr. 2020; 24: 3215-3230. https://doi.org/10.1007/s10008-020-04804-x.
[3]Chen X, Wu Y, Holze R. Ag(e)ing and Degradation of Supercapacitors: Causes, Mechanisms, Models and Countermeasures. Molecules 2023; 28: 5028. https://doi.org/10.3390/molecules28135028.
[4]Conway BE. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Springer, New York, USA, 1999.
[5]Dubal DP, Holze R. Synthesis, properties, and performance of nanostructured metal oxides for supercapacitors. Pure Appl. Chem. 2014; 86: 611-632. https://doi.org/10.1515/pac-2013-1021.
[6]Volkov AI, Dubal DP, Holze R, Wu Y. Mixed metal chalcogenides as active masses for supercapacitor electrodes – A review. Submitted to Advanced Functional Materials.
[7]Holze R, Wu YP. Intrinsically conducting polymers in electrochemical energy technology: Trends and progress. Electrochim. Acta 2014; 122: 93-107. https://doi.org/10.1016/j.electacta.2013.08.100.
[8]Dubal DP, Chen X, Wu Y., Holze R. Conducting Polymers for Supercapacitors. in: Conducting Polymers for Advanced Energy Applications (R.K. Gupta Ed.) CRC Press, Boca Raton 2021, p. 43-65.
[9]Wu Y, Holze R. Electrochemical energy conversion and storage.WILEY-VCH, Weinheim 2022
[10]Fu L, Qu Q, Holze R, Kondratiev VV, Wu Y. Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: The best of both worlds? J. Mater. Chem. A. 2019; 7: 14937-14970. https://doi.org/10.1039/C8TA10587A.
[11]Holze R. Composites of intrinsically conducting polymers with carbonaceous materials for supercapacitors - An update. Univ. J. Electrochem. 2023; 1(1): 16-50. https://doi.org/10.37256/ujec.1120232409.
[12]Ul Hoque MdI, Holze R. Intrinsically Conducting Polymer Composites as Active Masses in Supercapacitors. Polymers 2023; 15: 730. https://doi.org/10.3390/polym15030730.
[13]Holze R. From current peaks to waves and capacitive currents-on the origins of capacitor-like electrode behavior. J. Solid State Electr. 2017, 21, 2601-2607. https://doi.org/10.1007/s10008-016-3483-1.
[14]Qu Q, Yang S, Feng X. 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 2011; 23: 5574-5580. https://doi.org/10.1002/adma.201103042.
[15]Sun J, Wu C, Sun X, Hu H, Zhi C, Hou L, Yuan C. Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. J. Mater. Chem. A 2017; 5: 9443-9464. https://doi.org/10.1039/c7ta00932a.
[16]Wu Y, Holze R. Battery and/or Supercapacitor? – On the Merger of Two Electrochemical Storage System Families. Submitted to Energy Storage and Conversion.
[17]Wu Y, Holze R. Batterie oder Superkondensator oder Beides? Die Verschmelzung zweier elektrochemischer Speicheroptionen. Bunsen-Magazin 2022; 24: 100-102.
[18]Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015; 44: 7484-7539. https://doi.org/10.1039/c5cs00303b.
[19]Zhan C, Lian C, Zhang Y, Thompson MW, Xie Y, Wu J, Kent PRC, Cummings PT, Jiang DE. Computational Insights into Materials and Interfaces for Capacitive Energy Storage. Adv. Sci. 2017; 4: 1700059.
[20]Kortüm G. Lehrbuch der Elektrochemie. 4th ed., Verlag Chemie, Weinheim 1966.
[21]Kurc B, Pigłowska M, Rymaniak Ł, Fuć P. Modern nanocomposites and hybrids as electrode materials used in energy carriers. Nanomaterials 2021; 11: 1-45. https://doi.org/10.3390/nano11020538.
[22]Lakshmi KCS, Vedhanarayanan B. High-Performance Supercapacitors: A Comprehensive Review on Paradigm Shift of Conventional Energy Storage Devices. Batteries 2023; 9: 202. https://doi.org/10.3390/batteries9040202.
[23]Conway BE. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applica¬tions. New York, USA: Springer; 1999.
[24]Ghosh A, Lee YH, Carbon-based electrochemical capacitors. ChemSusChem 2012; 5: 480-499. https://doi.org/10.1002/cssc.201100645.
[25]Yang Y, Zhu T, Shen L, Liu Y, Zhang D, Zheng B, Gong K, Zheng J, Gong X. Recent progress in the all-solid-state flexible supercapacitors. Smart Mat. 2022; 3: 349-383. https://doi.org/10.1002/smm2.1103.
[26]González A, Goikolea E, Barrena JA, Mysyk R. Review on supercapacitors: Technologies and materials. Renew.Sustain. Energy Rev. 2016; 58: 1189-1206. https://doi.org/10.1016/j.rser.2015.12.249.
[27]Chatterjee DP, Nandi AK. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A 2021; 9: 15880-15918. https://doi.org/10.1039/d1ta02505h.
[28]Pathak M, Bhatt D, Bhatt RC, Bohra BS, Tatrari G, Rana S, Arya MC, Sahoo NG. High Energy Density Supercapacitors: An Overview of Efficient Electrode Materials, Electrolytes, Design, and Fabrication. Chem. Rec. 2023; 2023: e202300236. https://doi.org/10.1002/tcr.202300236.
[29]Poonam, Sharma K, Arora A, Tripathi SK. Review of supercapacitors: Materials and devices. J. Energy Stor¬age 2019; 21: 801-825. https://doi.org/10.1016/j.est.2019.01.010.
[30]Chakraborty S, Mary NL. Review-An Overview on Supercapacitors and Its Applications. J. Electrochem. Soc. 2022; 169: 020552. https://doi.org/10.1149/1945-7111/ac5306.
[31]Dhandapani E, Thangarasu S, Ramesh S, Ramesh K, Vasudevan R, Duraisamy N. Recent development and pro¬spective of carbonaceous material, conducting polymer and their composite electrode materials for superca¬pacitor-A review. J. Energy Storage 2022; 52: 104937. https://doi.org/10.1016/j.est.2022.104937.
[32]Patel KK, Singhal, T, Pandey, V, Sumangala, TP, Sreekanth, MS. Evolution and recent developments of high performance electrode material for supercapacitors: A review. J. Energy Storage 2021; 44: 103366. https://doi.org/10.1016/j.est.2021.103366.
[33]Zhao J, Burke AF. Review on supercapacitors: Technologies and performance evaluation. J. Energy Chem. 2021; 59: 276-291. https://doi.org/10.1016/j.jechem.2020.11.013.
[34]Abdel Maksoud MIA, Fahim RA, Shalan AE, Elkodous MA, Olojede SO, Osman AI, Farrell C, Al-Muhta¬seb AH, Awed AS. Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environm. Chem. Lett. 2021; 19: 375-439. https://doi.org/10.1007/s10311-020-01075-w.
[35]Bigdeloo M, Kowsari E, Ehsani A, Chinnappan A, Ramakrishna S, Ali Akbari R. Review on innovative sus¬tain¬able nanomaterials to enhance the performance of supercapacitors. J. Energy Storage 2021; 37: 102474. https://doi.org/10.1016/j.est.2021.102474.
[36]Forouzandeh P, Kumaravel V, Pillai SC. Electrode Materials for Supercapacitors: A Review of Recent Ad¬vances. Catalysts 2020; 10: 969. https://doi.org/10.3390/catal10090969.
[37]Saini P. A Historical Review of Electrode Materials and Electrolytes for Electrochemical Double Layer Supercapacitors and Pseudocapacitors. Ind. J. Pure Appl. Phys. 2023; 61: 268-290. https://doi.org/10.56042/ijpap.v61i4.69622.
[38]Li Z, Xu, K, Pan, Y. Recent development of Supercapacitor Electrode Based on Carbon Materials. Nanotech¬nol. Rev. 2019; 8: 35-49. https://doi.org/10.1515/ntrev-2019-0004.
[39]Miller EE, Hua Y, Tezel FH. Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors. J. Energy Storage 2018; 20: 30-40. https://doi.org/10.1016/j.est.2018.08.009.
[40]Suriyakumar S, Bhardwaj P, Grace AN, Stephan AM. Role of Polymers in Enhancing the Performance of Electro¬chemical Supercapacitors: A Review. Batteries&Supercaps 2021; 4: 571-584. https://doi.org/10.1002/batt.202000272.
[41]Kiamahalleh MV, Zein SHS, Najafpour G, Abd Sata S, Buniran, S. Multiwalled carbon nanotubes based nano¬composites for supercapacitors: A review of electrode materials. Nano 2012; 7: 1230002. https://doi.org/10.1142/S1793292012300022.
[42]Dubal DP, Wu Y, Holze R. Supercapacitors as fast storage systems for electric energy. Bunsen-Magazin 2015; 17: 216-227.
[43]Shukla AK, Sampath S, Vijayamohanan K. Electrochemical supercapacitors: Energy storage beyond batter¬ies. Curr. Sci. 2000; 79: 1656-1661.
[44]Dubal DP, Wu YP, Holze R. Supercapacitors: from the Leyden jar to electric busses. ChemTexts 2016; 2: 13. https://doi.org/10.1007/s40828-016-0032-6.
[45]Yu A, Chabot V, Zhang J. Electrochemical Supercapacitors for Energy Storage and Delivery - Fundamen¬tals and Applications. CRC Press: Boca Raton, 2013.
[46]Inamuddin, Ahmer MF, Asiri AM, Zaidi S. Electrochemical Capacitors in: Materials Research Founda¬tions. Mate¬rials Research Forum LLC: Millersville, 2018; Volume 26.
[47]Stevic Z. Supercapacitor Design and Applications. ExLi4EvA2016 2016.
[48]Miller JM. Ultracapacitor Applications. The Institution of Engineering and Technology: London, 2011.
[49]Shaikh NS, Ubale SB, Mane VJ, Shaikh JS, Lokhande VC, Praserthdam S, Lokhande CD, Kan-janaboos P. Novel electrodes for supercapacitor: Conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene. J. Alloys Compd. 2022; 893: 161998. https://doi.org/10.1016/j.jallcom.2021.161998.
[50]Beguin F, Frackowiak E. Supercapacitors. Wiley-VCH: Weinheim, 2013.
[51]Kumar Y, Rawal S, Joshi B, Hashmi SA. Background, fundamental understanding and progress in electrochemical capacitors. J. Solid State Electr. 2019; 23: 667-692. https://doi.org/10.1007/s10008-018-4160-3.
[52]Sahin ME, Blaabjerg F, Sangwongwanich A. A Comprehensive Review on Supercapacitor Applications and Developments. Energies 2022; 15: 674. https://doi.org/10.3390/en15030674.
[53]Kovalska E, Kocabas C. Organic electrolytes for graphene-based supercapacitor: Liquid, gel or solid. Mater. Today Commun. 2016; 7: 155-160. https://doi.org/10.1016/j.mtcomm.2016.04.013.
[54]Ue M. Chemical capacitors and quaternary ammonium salts. Electrochemistry 2007; 75: 565-572. https://doi.org/10.5796/electrochemistry.75.565.
[55]Samantaray S, Mohanty D, Hung IM, Moniruzzaman M, Satpathy SK. Unleashing recent electrolyte materials for next-generation supercapacitor applications: A comprehensive review. J. Energy Stor. 2023; 72: 108352. https://doi.org/10.1016/j.est.2023.108352.
[56]Eredia M, Bellani S, Zappia MI, Gabatel L, Galli V, Bagheri A, Beydaghi H, Bianca G, Conticello I, Bonaccorso F. High-energy density aqueous supercapacitors: The role of electrolyte pH and KI redox additive. APL Mater. 2022; 10: 101102. https://doi.org/10.1063/5.0106932.
[57]Liu CF, Liu YC, Yi TY, Hu CC. Carbon materials for high-voltage supercapacitors. Carbon 2019; 145: 529-548. https://doi.org/10.1016/j.carbon.2018.12.009.
[58]Electrolytes for Electrochemical Supercapacitors (C. Zhong, Y. Deng, W. Hu, D. Sun, X. Han, J. Qiao, J. Zhang Ed.) CRC Press, Boca Raton 2016.
[59]Beguin F, Presser V, Balducci A, Frackowiak E. Carbons and Electrolytes for Advanced Supercapacitors. Adv. Mater. 2014; 26: 2219-2251. https://doi.org/10.1002/adma.201304137.
[60]Pal B, Yang S, Ramesh S, Thangadurai V, Jose R. Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv. 2019; 1: 3807-3835. https://doi.org/10.1039/c9na00374f.
[61]Sajjad M, Khan MI, Cheng F, Lu W. A review on selection criteria of aqueous electrolytes performance evaluation for advanced asymmetric supercapacitors. J. Energy Storage 2021; 40: 102729. https://doi.org/10.1016/j.est.2021.102729.
[62]Wu Y, Holze R. Self-discharge in supercapacitors: Causes, effects and therapies: An overview. Electrochem. Energy Technol. 2021; 7: 1-37. https://doi.org/10.1515/eetech-2020-0100.
[63]Fan X, Zhong C, Liu J, Ding J, Deng Y, Han X, Zhang L, Hu W, Wilkinson DP, Zhang J. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chem. Rev. 2022; 122: 17155-17239. https://doi.org/10.1021/acs.chemrev.2c00196.
[64]Li J, Jia H, Ma S, Xie L, Wei XX, Dai L, Wang H, Su F, Chen CM. Separator Design for High-Performance Supercapacitors: Requirements, Challenges, Strategies, and Prospects. ACS Energy Lett. 2023; 8: 56-78. https://doi.org/10.1021/acsenergylett.2c01853.
[65]Becker HI. Low Voltage Electrolytic Capacitor, US patent, US2,800,616, 23.07.1957
[66]Rightmire RA, Electrical energy storage apparatus, US patent, US3288641, 07.06.1962.
[67]Robinson RA, Stokes RH. Electrolyte Solutions. Academic Press Inc., New York 1955
[68]Harned HS, Owen BB. Physical Chemistry of Electrolyte Solutions. 3rd ed, Reinhold Publ.Corp, New York 1957
[69]Wright MR. An Introduction to Aqueous Electrolyte Solutions. WILEY, Chichester 2007.
[70]Holze R. Zur Bestimmung der Kapazität elektrochemischer Doppelschichten, von Doppelschichtkondensatoren und deren Elektrodenmaterialen - Mißverständnisse und Fallstricke, Symposium Amgewandte Elektrochemie in der Materialforschung 24.-25. November 2022 (A. Michaelis, M. Schneider Eds.) Fraunhofer-Verlag, München 2022, p. 7-14.
[71]Chen X, Holze R. Surfactants as Performance-Enhancing Additives in Supercapacitor Electrolyte Solutions – An Overview. Batteries 2024; 10: 4. https://doi.org/10.3390/batteries10010004.
[72]Wu H, Wang X, Jiang L, Wu C, Zhao Q, Liu X, Hu B, Yi L. The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon. J. Power Sources 2013; 226: 202-209. https://doi.org/10.1016/j.jpowsour.2012.11.014.
[73]Speight JG. Lange's Handbook of Chemistry. McGraw-Hill, New York 2005
[74]Nightingale Jr. ER. PHENOMENOLOGICAL THEORY OF ION SOLVATION. EFFECTIVE RADI OF HYDRATED IONS. J. Phys. Chem. 1959; 63: 1381-1387.
[75]Volkov AG, Paula S, Deamer DW. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem. Bioenerg. 1997; 42: 153-160. https://doi.org/10.1016/S0302-4598(96)05097-0.
[76]Kiriukhin MY, Collins KD. Dynamic hydration numbers for biologically important ions. Biophys. Chem. 2002; 99: 155-168. https://doi.org/10.1016/S0301-4622(02)00153-9.
[77]Holze R. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group IV: Physical Chemistry, Volume 9: Electrochemistry, Subvolume B: Ionic Conductivities of Liquid Systems, Part 2: Deep Eutectic Solvents and Electrolyte Solutions, W. Martienssen, M.D. Lechner, Eds., Springer-Verlag, Berlin 2016
[78]Mähler J, Persson I. A study of the hydration of the alkali metal ions in aqueous solution. Inorg. Chem. 2012; 51: 425-438. https://doi.org/10.1021/ic2018693.
[79]Fic K, Lota G, Meller M, Frackowiak E. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 2012; 5: 5842-5850. https://doi.org/10.1039/c1ee02262h.
[80]Ge Y, Liu Z, Wu Y, Holze R. On the utilization of supercapacitor electrode materials. Electrochim. Acta 2021; 366: 137390. https://doi.org/10.1016/j.electacta.2020.137390.
[81]Abd-Elwahed A, Mahmoud H, Holze R. Anion effects with polyaniline in aqueous solutions. Curr. Trends Polym. Sci. 2003; 8: 211-222.
[82]Abd-Elwahed A, Holze R. Ion size and size memory effects with electropolymerized polyaniline. Synth. Met. 2002; 131: 61-70. https://doi.org/10.1016/S0379-6779(02)00153-4.
[83]Torchala K, Kierzek K, Machnikowski J. Capacitance behavior of KOH activated mesocarbon microbeads in different aqueous electrolytes. Electrochim. Acta 2012; 86: 260-267. https://doi.org/10.1016/j.electacta.2012.07.062.
[84]Zheng JP, Jow TR. The effect of salt concentration in electrolytes on the maximum energy storage for double layer capacitors. J. Electrochem. Soc. 1997; 144: 2417-2420. https://doi.org/10.1149/1.1837829.
[85]Xie X, Holze R. Electrode Kinetic Data: Geometric vs. Real Surface Area. Batteries, 2022; 8, 146. https://doi.org/10.3390/batteries8100146.
[86]Xie X, Holze R. Meaning and Determination of Electrode Surface Area. Available online: URL https://encyclo¬pedia.pub/entry/41569 (accessed on 02.01.2024).
[87]Ardizzone S, Fregonara G, Trasatti S. "Inner" and "outer" active surface of RuO2 electrodes. Electrochim.Acta. 1990; 35: 263-269.
[88]Holze R. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group IV: Physical Chemistry, Volume 9: Electrochemistry, Subvolume A: Electrochemical Thermodynamics and Kinetics, W. Martienssen, M.D. Lechner, Eds., Springer-Verlag, Berlin 2007
[89]Komaba S, Ogata A, Tsuchikawa T. Enhanced supercapacitive behaviors of birnessite. Electrochem. Commun. 2008; 10: 1435-1437. https://doi.org/10.1016/j.elecom.2008.07.025.
[90]Perret P, Khani Z, Brousse T, Bélanger D, Guay D. Carbon/PbO2 asymmetric electrochemical capacitor based on methanesulfonic acid electrolyte. Electrochim. Acta 2011; 56: 8122-8128. https://doi.org/10.1016/j.electacta.2011.05.125.
[91]Beck F, Euler KJ. Elektrochemische Energiespeicher. VDE-Verlag GmbH, Berlin 1984.
[92]Beck F. Elektrochemie neuer Speichersysteme. Ber. Bunsenges. Phys. Chem. 1988; 92: 1283-1297.
[93]Banerjee A, Ramasesha SK, Shukla AK. A photovoltaic stand-alone lighting system with polymeric-silica-gel-electrolyte-based substrate-integrated lead-carbon hybrid ultracapacitors. Electrochem. Energy Technol. 2015; 1: 10-16. https://doi.org/10.1515/eetech-2015-0001.
[94]Kumaran KT, Kiruthika GVM, Arulraj I, Ragupathy P. Quinone-Wrapped Nanostructured MnO2: A Synergetic Approach to Enhanced Supercapacitive Behavior and Magnetic Properties. J. Electrochem. Soc. 2016; 163: A1743-A1752. https://doi.org/10.1149/2.1261608jes.
[95]Holze, R. Spectroelectrochemistry of conducting polymers. in: Handbook of Advanced Electronic and Photonic Materials and Devices, Vol. 8 (H.S. Nalwa Ed.) Academic Press, San Diego, CA, USA, 2001, p. 209-301.
[96]Holze, R. Spectroelectrochemistry of intrinsically conducting polymers of aniline and substituted anilines. in: Advanced Functional Molecules and Polymers, Vol. 2 (H.S. Nalwa Ed.) Gordon and Breach and OPA N.V., Singapur 2001, p. 171-221.
[97]Zhu J, Xu Y, Wang J, Lin J, Sun X, Mao S. The effect of various electrolyte cations on electrochemical performance of polypyrrole/RGO based supercapacitors. Phys. Chem. Chem. Phys. 2015; 17: 28666-28673. https://doi.org/10.1039/c5cp04080a.
[98]Holze R. Conjugated Molecules and Polymers in Secondary Batteries: A Perspective. Molecules 2022; 27: 546. https://doi.org/10.3390/molecules27020546.
[99]Yu M, Lu Y, Zheng H, Lu X. New Insights into the Operating Voltage of Aqueous Supercapacitors. Chem.Eur.J. 2018; 24: 3639-3649. https://doi.org/10.1002/chem.201704420.
[100]Chen X, Holze R. Surfactants as Performance-Enhancing Additives in Supercapacitor Electrolyte Solutions-An Overview. Batteries 2024; 10: 4. https://doi.org/10.3390/batteries10010004.
[101]Peljo P, Girault HH. Electrochemical potential window of battery electrolytes: The HOMO-LUMO misconception. Energy Environ. Sci. 2018; 11: 2306-2309. https://doi.org/10.1039/c8ee01286e.
[102]Borodin O. Challenges with prediction of battery electrolyte electrochemical stability window and guiding the electrode-electrolyte stabilization. Curr. Opin. Electrochem. 2019; 13, 86-93. https://doi.org/10.1016/j.coelec.2018.10.015.
[103]Maeshima H, Moriwake H, Kuwabara A, Fisher CAJ, Tanaka I. An improved method for quantitatively predicting the electrochemical stabilities of organic liquid electrolytes using Ab initio Calculations. J. Electrochem. Soc. 2014; 161: G7-G14. https://doi.org/10.1149/2.069403jes.
[104]Maeshima H, Moriwake H, Kuwabara A, Fisher CAJ. Quantitative evaluation of electrochemical potential windows of electrolytes for electric double-layer capacitors using Ab initio calculations. J. Electrochem. Soc. 2010; 157: A696-A701. https://doi.org/10.1149/1.3368694.
[105]Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006; 313: 1760-1763. https://doi.org/10.1126/science/1132195.
[106]Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem.-Int. Ed. 2008; 47: 3392-3395. https://doi.org/10.1002/anie.200704894.
[107]Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 2008; 130: 2730-2731. https://doi.org/10.1021/ja7106178.
[108]Jiang De, Wu J. Microscopic insights into the electrochemical behavior of nonaqueous electrolytes in electric double-layer capacitors. J. Phys. Chem. Lett. 2013; 4: 1260-1267. https://doi.org/10.1021/jz4002967.
[109]Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015; 350: 938-943. https://doi.org/10.1126/science.aab1595.
[110]Hasegawa G, Kanamori K, Kiyomura T, Kurata H, Abe T, Nakanishi K. Hierarchically Porous Carbon Monoliths Comprising Ordered Mesoporous Nanorod Assemblies for High-Voltage Aqueous Supercapacitors. Chem. Mater. 2016; 28: 3944-3950. https://doi.org/10.1021/acs.chemmater.6b01261.
[111]Lv T, Suo L. Water-in-salt widens the electrochemical stability window: Thermodynamic and kinetic factors. Curr. Opin. Electrochem. 2021; 29: 100818. https://doi.org/10.1016/j.coelec.2021.100818.
[112]Sayah S, Ghosh A, Baazizi M, Amine R, Dahbi M, Amine Y, Ghamouss F, Amine K. How do super concentrated electrolytes push the Li-ion batteries and supercapacitors beyond their thermodynamic and electrochemical limits? Nano Energy 2022; 98: 107336. https://doi.org/10.1016/j.nanoen.2022.107336.
[113]Xiao D, Tang X, Zhang L, Xu Z, Liu Q, Dou H, Zhang X. Elucidating the cation hydration ratio in water-in-salt electrolytes for carbon-based supercapacitors. Phys. Chem. Chem. Phys. 2022; 24: 29512-29519. https://doi.org/10.1039/d2cp03976a.
[114]Huang S, Li Z, Li P, Du X, Ma M, Liang Z, Su Y, Xiong L. Ultrahigh-voltage aqueous electrolyte for wide-temperature supercapacitors. J. Mater. Chem. A 2023; 11: 15532-15539. https://doi.org/10.1039/d3ta01639k.
[115]Bu X, Su L, Dou Q, Lei S, Yan X. A low-cost "water-in-salt" electrolyte for a 2.3 V high-rate carbon-based supercapacitor. J. Mater. Chem. A 2019; 7: 7541-7547. https://doi.org/10.1039/c9ta00154a.
[116]Kim J, Lee S, Lee D, Yoo SJ. Beyond conventional aqueous electrolytes: Recent developments in Li-free "water-in-salt" electrolytes for supercapacitors. Bull. Kor. Chem. Soc. 2023; 44: 468-482. https://doi.org/10.1002/bkcs.12688.
[117]Santos JPA, Pinzon MJ, Santos EA, Vicentini R, Pagan CJB, Da Silva LM, Zanin H. Boosting energy-storage capability in carbon-based supercapacitors using low-temperature water-in-salt electrolytes. J. Energy Chem. 2022; 70: 521-530. https://doi.org/10.1016/j.jechem.2022.02.055.
[118]Borodin O, Suo L, Gobet M, Ren X, Wang F, Faraone A, Peng J, Olguin M, Schroeder M, Ding MS, Gobrogge E, von Wald Cresce A, Munoz S, Dura JA, Greenbaum S, Wang C, Xu K. Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes. ACS Nano 2017; 11: 10462-10471. https://doi.org/10.1021/acsnano.7b05664.
[119]Tulaphon P, Tantitumrongwut P, Ditkanaruxkul T, Bunpheng A, Tangthana-umrung K, Chomkhuntod P, Iamprasertkun P. High voltage aqueous based energy storage with "Water-in-LiNO3" electrolyte. Chem. Eng. J. Adv. 2023; 16: 100553. https://doi.org/10.1016/j.ceja.2023.100553.
[120]Chomkhuntod P, Iamprasertkun P, Chiochan P, Suktha P, Sawangphruk M. Scalable 18,650 aqueous-based supercapacitors using hydrophobicity concept of anti-corrosion graphite passivation layer. Sci. Rep. 2021; 11: 13082. https://doi.org/10.1038/s41598-021-92597-y.
[121]Reber D, Kühnel RS, Battaglia C. High-voltage aqueous supercapacitors based on NaTFSI. Sustainable Energy Fuels 2017; 1: 2155-2161. https://doi.org/10.1039/c7se00423k.
[122]Xie J, Liang Z, Lu YC. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 2020; 19: 1006-1011. https://doi.org/10.1038/s41563-020-0667-y.
[123]Tian X, Zhu Q, Xu B. "Water-in-Salt" Electrolytes for Supercapacitors: A Review. ChemSusChem 2021; 14: 2501-2515. https://doi.org/10.1002/cssc.202100230.
[124]Samanta P, Ghosh S, Kundu A, Samanta P, Murmu NC, Kuila T. A strategic way of high-performance energy storage device development with environmentally viable “Water-in-salt” electrolytes. J. Energy Chem. 2023; 78: 350-373. https://doi.org/10.1016/j.jechem.2022.11.045.
[125]Wang Y, Meng X, Sun J, Liu Y, Hou L. Recent Progress in "Water-in-Salt" Electrolytes Toward Non-lithium Based Rechargeable Batteries. Front. Chem. 2020; 8: 595. https://doi.org/10.3389/fchem.2020.00595.
[126]Borodin O, Self J, Persson KA, Wang C, Xu K.Uncharted Waters: Super-Concentrated Electrolytes. Joule 2020; 4: 69-100. https://doi.org/10.1016/j.joule.2019.12.007.
[127]Tian ZW, Dong QF, Zheng MS, Lin ZG. Supercapacitor, US-patent, US20090190286, 30.07.2009.
[128]Tanahashi I. Capacitance enhancement of activated carbon fiber cloth electrodes in electrochemical capacitors with a mixed aqueous solution of H2SO4 and AgNO3. Electrochem. Solid State Lett. 2005; 8: A627-A629. https://doi.org/10.1149/1.2087187.
[129]Zhang L, Yang S, Chang J, Zhao D, Wang J, Yang C, Cao B. A Review of Redox Electrolytes for Supercapacitors. Front. Chem. 2020; 8: 413. https://doi.org/10.3389/fchem.2020.00413.
[130]Lota G, Frackowiak E. Striking capacitance of carbon/iodide interface. Electrochem. Commun. 2009; 11: 87-90. https://doi.org/10.1016/j.elecom.2008.10.026.
[131]Chun SE, Evanko B, Wang X, Vonlanthen D, Ji X, Stucky GD, Boettcher SW. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat. Commun. 2015; 6: 7818. https://doi.org/10.1038/ncomms8818.
[132]Akinwolemiwa B, Peng C, Chen GZ. Redox Electrolytes in Supercapacitors. J. Electrochem. Soc. 2015; 162: A5054-A5059. https://doi.org/10.1149/2.0111505jes.
[133]Qin W, Zhou N, Wu C, Xie M, Sun H, Guo Y, Pan L. Mini-Review on the Redox Additives in Aqueous Electrolyte for High Performance Supercapacitors. ACS Omega 2020; 5: 3801-3808. https://doi.org/10.1021/acsomega.9b04063.
[134]Shi J, Tian X, Song Y, Yang T, Hu S, Liu Z. Redox electrolyte-enhanced carbon-based supercapacitors: recent advances and future perspectives. Energy Mater. Devices 2023; 1: 9370009. https://doi.org/10.26599/EMD.2023.9370009.
[135]Pang L, Wang H. Inorganic Aqueous Anionic Redox Liquid Electrolyte for Supercapacitors. Adv. Mater. Technol. 2022; 7: 2100501. https://doi.org/10.1002/admt.202100501.
[136]Lota G, Fic K, Frackowiak E. Alkali metal iodide/carbon interface as a source of pseudocapacitance. Electrochem. Commun. 2011; 13: 38-41. https://doi.org/10.1016/j.elecom.2010.11.007.
[137]Senthilkumar ST, Kalai Selvan R, Ulaganathan M, Melo JS. Fabrication of Bi2O3||AC asymmetric supercapacitor with redox additive aqueous electrolyte and its improved electrochemical performances. Electrochim. Acta 2014; 115: 518-524. https://doi.org/10.1016/j.electacta.2013.10.199.
[138]Park J, Lee J, Kim W. Redox-Active Water-in-Salt Electrolyte for High-Energy-Density Supercapacitors. ACS Energy Lett. 2022; 7: 1266-1273. https://doi.org/10.1021/acsenergylett.2c00015.
[139]Lee S, Hong J, Kang K. Redox-Active Organic Compounds for Future Sustainable Energy Storage System. Adv. Energy Mater. 2020; 10: 2001445. https://doi.org/10.1002/aenm.202001445.
[140]Chen L, Bai H, Huang Z, Li L. Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors. Energy Environ.Sci. 2014; 7: 1750-1759. https://doi.org/10.1039/c4ee00002a.
[141]Navalpotro P, Palma J, Anderson M, Marcilla R. High performance hybrid supercapacitors by using para-Benzoquinone ionic liquid redox electrolyte. J. Power Sources 2016; 306: 711-717. https://doi.org/10.1016/j.jpowsour.2015.12.103.
[142]Ionic Liquids (B. Kirchner Ed.) Springer, Heidelberg 2009.
[143]Holze R. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group IV: Physical Chemistry, Volume 9: Electrochemistry, Subvolume B: Ionic Conductivities of Liquid Systems, Part 1: Molten Salts and Ionic Liquids, W. Martienssen, M.D. Lechner, Eds., Springer-Verlag, Berlin 2015
[144]Deep Eutectic Solvents (D.J. Ramón, G. Guillena Eds.) WILEY-VCH, Weinheim 2020,
[145]Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, ZelovichT, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021; 121: 1232-1285. https://doi.org/10.1021/acs.chemrev.0c00385.
[146]El Achkar T, Greige-Gerges H, Fourmentin S. Basics and properties of deep eutectic solvents: a review. Environm. Chem. Lett. 2021; 19: 3397-3408. https://doi.org/10.1007/s10311-021-01225-8.
[147]Electrodeposition from Ionic Liquids (F. Endres, A.P. Abbott, D.R. MacFarlane Ed.) Wiley-VCH, Weinheim 2008.
[148]Eshetu GG, Armand M, Scrosati B, Passerini S. Energy storage materials synthesized from ionic liquids. Angew. Chem. Int. Ed. 2014; 53: 13342-13359. https://doi.org/10.1002/anie.201405910.
[149]von Czarnecki P, Ahrens M, Iliev B, Schubert TJS. Ionic Liquid based Electrolytes for Electrical Storage. ECS Trans. 2017; 77: 79-87. https://doi.org/10.1149/07701.0079ecst.
[150]Taneja N, Kumar A, Gupta P, Gupta M, Singh P, Agrawal N, Bocchetta P, Kumar Y. Advancements in liquid and solid electrolytes for their utilization in electrochemical systems. J. Energy Storage 2022; 56: 105950. https://doi.org/10.1016/j.est.2022.105950.
[151]MacFarlane DR, Forsyth M, Howlett PC, Kar M, Passerini S, Pringle JM, Ohno H, Watanabe M, Yan F, Zhang S, Zhang J. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 2016; 1: 15005. https://doi.org/10.1038/natrevmats.2015.5.
[152]Brandt A, Pohlmann S, Varzi A, Balducci A, Passerini S. Ionic liquids in supercapacitors. MRS Bull. 2013; 38: 554-559. https://doi.org/10.1557/mrs.2013.151.
[153]Ue M. Application of Ionic Liquids to Double-Layer Capacitors. in: Electrochemical Aspects of Ionic Liquids (H. Ohno Ed.) Wiley-Interscience, Hoboken 2011, p. 243-270.
[154]Kim CH, Wee JH, Kim YA, Yang KS, Yang CM. Tailoring the pore structure of carbon nanofibers for achieving ultrahigh-energy-density supercapacitors using ionic liquids as electrolytes. J. Mater. Chem. A 2016; 4: 4763-4770. https://doi.org/10.1039/c5ta10500e.
[155]Wang Y, Tian G. Theoretical Insight into the Imidazolium-Based Ionic Liquid Interface Structure and Differential Capacitance on Au(111): Effects of the Cationic Substituent Group. Langmuir 2023, doi: 10.1021/acs.langmuir.3c01381
[156]Holze, R.; Bełtowska-Brzezinska, M. On the adsorption of aliphatic alcohols on gold. Electrochim. Acta 1985, 30, 937-939. https://doi.org/10.1016/0013-4686(85)80153-5.
[157]Holze, R.; Bełtowska-Brzezinska, M. On the adsorption of aliphatic alcohols on gold Part II. J. Electroanal. Chem. 1986, 201, 387-396. https://doi.org/10.1016/0022-0728(86)80062-6.
[158]Lockett V, Sedev R, Ralston J, Horne M, Rodopoulos T. Differential capacitance of the electrical double layer in imidazolium-based ionic liquids: Influence of potential, cation size, and temperature. J. Phys. Chem. C 2008; 112: 7486-7495. https://doi.org/10.1021/jp7100732.
[159]Karuppasamy K, Theerthagiri J, Vikraman D, Yim CJ, Hussain S, Sharma R, Maiyalagan T, Qin J, Kim HS. Ionic liquid-based electrolytes for energy storage devices: A brief review on their limits and applications. Polymers 2020; 12: 918. https://doi.org/10.3390/POLYM12040918.
[160]Kuroda K. A simple overview of toxicity of ionic liquids and designs of biocompatible ionic liquids. New J. Chem. 2022; 46: 20047-20052. https://doi.org/10.1039/d2nj02634a.
[161]Kim E, Han J, Ryu S, Choi Y, Yoo J. Ionic liquid electrolytes for electrochemical energy storage devices. Materials 2021; 14: 4000. https://doi.org/10.3390/ma14144000.
[162]Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K. Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chem. Rev. 2017; 117: 7190-7239. https://doi.org/10.1021/acs.chemrev.6b00504.
[163]Zhang L, Tsay K, Bock C, Zhang J. Ionic liquids as electrolytes for non-aqueous solutions electrochemical supercapacitors in a temperature range of 20 °C-80 °C. J. Power Sources 2016; 324: 615-624. https://doi.org/10.1016/j.jpowsour.2016.05.008.
[164]Handa N, Sugimoto T, Yamagata M, Kikuta M, Kono M, Ishikawa M. A neat ionic liquid electrolyte based on FSI anion for electric double layer capacitor. J. Power Sources 2008; 185: 1585-1588. https://doi.org/10.1016/j.jpowsour.2008.08.086.
[165]Eftekhari A. Supercapacitors utilising ionic liquids. Energy Storage Mater. 2017; 9: 47-69. https://doi.org/10.1016/j.ensm.2017.06.009.
[166]Lee WG, Cho WJ, Whang YH, Raj CJ, Kim BC, Park JH, Yu KH. Feasible study of polypyrrole film in single and double cationic ionic liquids as novel electrolytes for energy storage applications. Synthet.Met. 2016; 222: 274-284. https://doi.org/10.1016/j.synthmet.2016.10.029.
[167]Kazemiabnavi S, Zhang Z, Thornton K, Banerjee S. Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries. J. Phys. Chem.B 2016; 120: 5691-5702. https://doi.org/10.1021/acs.jpcb.6b03433.
[168]Newell R, Faure-Vincent J, Iliev B, Schubert T, Aradilla D. A new high performance ionic liquid mixture electrolyte for large temperature range supercapacitor applications (-70 °C to 80 °C) operating at 3.5V cell voltage. Electrochim. Acta 2018; 267: 15-19. https://doi.org/10.1016/j.electacta.2018.02.067.
[169]Tiruye GA, Munoz-Torrero D, Palma J, Anderson M, Marcilla R. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids. J. Power Sources 2016; 326: 560-568. https://doi.org/10.1016/j.jpowsour.2016.03.044.
[170]Hernández G, Isik M, Mantione D, Pendashteh A, Navalpotro P, Shanmukaraj D, Marcilla R, Mecerreyes D. Redox-active poly(ionic liquid)s as active materials for energy storage applications. J. Mater. Chem. A 2017; 5: 16231-16240. https://doi.org/10.1039/c6ta10056b.
[171]Yang Z. Toxicity and Biodegradability of Deep Eutectic Solvents and Natural Deep Eutectic Solvents in: Deep Eutectic Solvents (D.J. Ramón, G. Guillena Ed.) WILEY-VCH, Weinheim 2020, p. 43-60.
[172]Wang W, Sabugaa MM, Chandra S, Asmara YP, Abd Alreda B, Ulloa N, Elmasry Y, Kadhim MM. Choline chloride-based deep eutectic solvents as electrolytes for wide temperature range supercapacitors. J. Energy Stor. 2023; 71: 108141. https://doi.org/10.1016/j.est.2023.108141.
[173]Zaidi W, Timperman L, Anouti M. Deep eutectic solvent based on sodium cations as an electrolyte for supercapacitor application. RSC Adv. 2014; 4: 45647-45652. https://doi.org/10.1039/c4ra08178a.
[174]Flory PJ. Introductory lecture. Faraday Discuss. Chem. Soc. 1974; 57: 7-18. https://doi.org/10.1039/DC9745700007.
[175]Stephan AM, Thomas S. Electrolytes: Gel. in: Encyclopedia of Electrochemical Power Sources Vol. 1 (J. Garche, C.K. Dyer, P.T. Moseley, Z. Ogumi, D.A.J. Rand, B. Scrosati Ed.) Elsevier, Amsterdam 2009, p. 140-152.
[176]May GJ, Lenain P. Gelled-electrolyte lead/acid batteries for stationary and traction applications. J. Power Sources 1992; 40: 187-193. https://doi.org/10.1016/0378-7753(92)80051-C.
[177]Hardman AM. A comparison of flooded, gelled and absorptive-separator lead/acid cells. J. Power Sources 1988; 23: 127-134. https://doi.org/10.1016/0378-7753(88)80058-2.
[178]Polymer Electrolytes (T. Winie, A.K. Arof, S. Thomas Ed.) WILEY-VCH, Weinheim 2020
[179]Stephan AM. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 2006; 42: 21-42. https://doi.org/10.1016/j.eurpolymj.2005.09.017.
[180]Shi Y, Zhang J, Pan L, Shi Y, Yu G. Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today 2016; 11: 738-762. https://doi.org/10.1016/j.nantod.2016.10.002.
[181]Dai H, Zhang G, Rawach D, Fu C, Wang C, Liu X, Dubois M, Lai C, Sun S. Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives. Energy Storage Materials 2021; 34: 320-355. https://doi.org/10.1016/j.ensm.2020.09.018.
[182]Alipoori S, Mazinani S, Aboutalebi SH, Sharif F. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. J. Energy Stor. 2020; 27: 101072. https://doi.org/10.1016/j.est.2019.101072.
[183]Choudhury NA, Sampath S, Shukla AK. Hydrogel-polymer electrolytes for electrochemical capacitors: An overview. Energy Environ. Sci. 2009; 2: 55-67. https://doi.org/10.1039/b811217g.
[184]Hu J, Xie K, Liu X, Guo S, Shen C, Liu X, Li X, Wang JG, Wie B. Dramatically Enhanced Ion Conductivity of Gel Polymer Electrolyte for Supercapacitor via h-BN Nanosheets Doping. Electrochim. Acta 2017; 227: 455-461. https://doi.org/10.1016/j.electacta.2017.01.045.
[185]Yan T, Zou Y, Zhang X, Li D, Guo X, Yang D. Hydrogen Bond Interpenetrated Agarose/PVA Network: A Highly Ionic Conductive and Flame-Retardant Gel Polymer Electrolyte. ACS Appl. Mater. Interf. 2021; 13: 9856-9864. https://doi.org/10.1021/acsami.0c20702.
[186]Na R, Lu N, Zhang S, Huo G, Yang Y, Zhang C, Mu Y, Luo Y, Wang G. Facile synthesis of a high-performance, fire-retardant organic gel polymer electrolyte for flexible solid-state supercapacitors. Electrochim. Acta 2018; 290: 262-272. https://doi.org/10.1016/j.electacta.2018.09.074.
[187]Peng S, Jiang X, Xiang X, Chen K, Chen G, Jiang X, Hou L. High-performance and flexible solid-state supercapacitors based on high toughness and thermoplastic poly(vinyl alcohol)/NaCl/glycerol supramolecular gel polymer electrolyte. Electrochim.Acta 2019;324, 134874. https://doi.org/10.1016/j.electacta.2019.134874.
[188]Jha S, Mehta S, Chen Y, Ma L, Renner P, Parkinson DY, Liang H. Design and Synthesis of Lignin-Based Flexible Supercapacitors. ACS Sustainable Chem. Eng. 2020; 8: 498-511. https://doi.org/10.1021/acssuschemeng.9b05880.
[189]Mehta S, Jha S, Huang D, Arole K, Liang H. Microwave Synthesis of MnO2-Lignin Composite Electrodes for Supercapacitors. J. Compos. Sci. 2021; 5: 216. https://doi.org/10.3390/jcs5080216.
[190]Hu X, Fan L, Qin G, Shen Z, Chen J, Wang M, Yang J, Chen Q. Flexible and low temperature resistant double network alkaline gel polymer electrolyte with dual-role KOH for supercapacitor. J. Power Sources 2019; 414: 201-209. https://doi.org/10.1016/j.jpowsour.2019.01.006.
[191]Lin T, Shi M, Huang F, Peng J, Bai Q, Li J, Zhai M. One-Pot Synthesis of a Double-Network Hydrogel Electrolyte with Extraordinarily Excellent Mechanical Properties for a Highly Compressible and Bendable Flexible Supercapacitor. ACS Appl. Mater. Interf, 2018; 10: 29684-29693. https://doi.org/10.1021/acsami.8b11377.
[192]Tang Q, Chen M, Yang C, Wang W, Bao H, Wang G. Enhancing the Energy Density of Asymmetric Stretchable Supercapacitor Based on Wrinkled CNT@MnO2 Cathode and CNT@polypyrrole Anode. ACS Appl. Mater. Interfaces 2015; 7: 15303-15313. https://doi.org/10.1021/acsami.5b03148.
[193]Huang Y, Zhong M, Huang Y, Zhu M, Pei Z, Wang Z, Xue Q, Xie X, Zhi C. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 2015; 6: 10310. https://doi.org/10.1038/ncomms10310.
[194]Huang Y, Zhong M, Shi F, Liu X, Tang Z, Wang Y, Huang Y, Hou H, Xie X. An Intrinsically Stretchable and Compressible Supercapacitor Containing a Polyacrylamide Hydrogel Electrolyte. Angew. Chem. Int. Ed. 2017; 56: 9141-9145. https://doi.org/10.1002/anie.201705212.
[195]Lv L, Zhang S, Yan T, Cai R, Zou Y. In Situ Polymerization of Xanthan/Acrylamide for Highly Ionic Conductive Gel Polymer Electrolytes with Unique Interpenetrating Network. ACS Appl. Polym. Mater. 2022; 4: 9241-9249. https://doi.org/10.1021/acsapm.2c01510.
[196]Wei J, Yin C, Wang H, Wang Q. Polyampholyte-doped aligned polymer hydrogels as anisotropic electrolytes for ultrahigh-capacity supercapacitors. J. Mater. Chem. A 2018; 6: 58-64. https://doi.org/10.1039/c7ta09616j.
[197]Jamil R, Silvester DS. Ionic liquid gel polymer electrolytes for flexible supercapacitors: Challenges and prospects. Curr. Opin. Electrochem. 2022; 35: 101046. https://doi.org/10.1016/j.coelec.2022.101046.
[198]Wu W, Dong S, Zhang X, Hao J. Gel electrolytes and aerogel electrodes from ILs-based emulsions for supercapacitor applications. Chem. Eng. J. 2022; 446: 137328. https://doi.org/10.1016/j.cej.2022.137328.
[199]de Oliveira PSC, Alexandre SA, Silva GG, Trigueiro JPC, Lavall RL. PIL/IL gel polymer electrolytes: The influence of the IL ions on the properties of solid-state supercapacitors. Eur. Polym. J. 2018; 108: 452-460. https://doi.org/10.1016/j.eurpolymj.2018.09.024.
[200]Shin C, Yao L, Lin H, Liu P, Ng TN. Photothermal Supercapacitors with Gel Polymer Electrolytes for Wide Temperature Range Operation. ACS Energy Lett. 2023; 8: 1911-1918. https://doi.org/10.1021/acsenergylett.3c00207.
[201]Yan C, Jin M, Pan X, Ma L, Ma X. A flexible polyelectrolyte-based gel polymer electrolyte for high-performance all-solid-state supercapacitor application. RSC Adv. 2020; 10: 9299-9308. https://doi.org/10.1039/c9ra10701k.
[202]Zhang X, Wang L, Peng J, Cao P, Cai X, Li J, Zhai M. A Flexible Ionic Liquid Gelled PVA-Li2SO4 Polymer Electrolyte for Semi-Solid-State Supercapacitors. Adv. Mater. Interfaces 2015; 2: 1500267. https://doi.org/10.1002/admi.201500267.
[203]Lawrence DW, Tran C, Mallajoysula AT, Doorn SK, Mohite A, Gupta G, Kalra V. High-energy density nanofiber-based solid-state supercapacitors. J. Mater. Chem. A 2015; 4: 160-166. https://doi.org/10.1039/c5ta05552k.
[204]Younis AA, Ensinger W, El-Sabbah MMB, Holze R. Corrosion protection of pure aluminium and aluminium alloy (AA7075) in salt solution with silane-based sol-gel coatings. Mater. Corros. 2013; 64: 276-283. https://doi.org/10.1002/maco.201206691.
[205]Younis A, El-Sabbah MMB, Holze R. The effect of chloride concentration and pH on pitting corrosion of AA7075 aluminum alloy coated with phenyltrimethoxysilane. J. Solid State Electr. 2012; 16: 1033-1040. https://doi.org/10.1007/s10008-011-1476-7.
[206]Sultana S, Ahmed K, Jiwanti PK, Wardhana BY, Shiblee MDNI. Ionic liquid-based gels for applications in electrochemical energy storage and conversion devices: A review of recent progress and future prospects. Gels 2022; 8: 2. https://doi.org/10.3390/gels8010002.
[207]Kim D, Kannan PK, Chung CH. High-Performance Flexible Supercapacitors Based on Ionogel Electrolyte with an Enhanced Ionic Conductivity. ChemistrySelect 2018; 3: 2190-2195. https://doi.org/10.1002/slct.201702711.
[208]Rana HH, Park JH, Gund GS, Park HS. Highly conducting, extremely durable, phosphorylated cellulose-based ionogels for renewable flexible supercapacitors. Energy Storage Mater. 2020; 25: 70-75. https://doi.org/10.1016/j.ensm.2019.10.030.
[209]Mao T, Wang S, Yong Z, Wang X, Wang X, Chen H, Liu G, Wang D, Wang Z. High-stable, outstanding heat resistance ionogel electrolyte and the poly(3,4-ethylenedioxythiophene) electrodes with excellent long-term stability for all-solid-state supercapacitor. Chem. Eng. J. 2021; 417: 129269. https://doi.org/10.1016/j.cej.2021.129269.
[210]Sheng H, Zhu A, Zhang L, Huang J, Yang T, Qin S, Zhang F, Xu Q, Xie H. Use of an [EMIM][OAc]/GVL-based organic electrolyte solvent to engineer chitosan into a nanocomposite organic ionogel electrolyte for flexible supercapacitors. Green Chem.2023; 25: 3046-3056. https://doi.org/10.1039/d2gc04019k.
[211]Pazhamalai P, Krishnamoorthy K, Mariappan VK, Sahoo S, Manoharan S, Kim SJ. A High Efficacy Self-Charging MoSe2 Solid-State Supercapacitor Using Electrospun Nanofibrous Piezoelectric Separator with Ionogel Electrolyte. Adv. Mater. Interfaces 2018; 5: 1800055. https://doi.org/10.1002/admi.201800055.
[212]Zhu A, Huang J, Xie H, Yue W, Qin S, Zhang F, Xu Q. Use of a superbase/DMSO/CO2 solvent in order to incorporate cellulose into organic ionogel electrolyte for flexible supercapacitors. Chem. Eng. J. 2022; 446: 137032. https://doi.org/10.1016/j.cej.2022.137032.
[213]Park J, Sun JY. Phase-Transitional Ionogel-Based Supercapacitors for a Selective Operation. ACS Appl. Mater. Interf. 2022; 14: 23375-23382. https://doi.org/10.1021/acsami.2c02160.
[214]Liu X, Taiwo OO, Yin C, Ouyang M, Chowdhury R, Wang B, Wang H, Wu B, Brandon NP, Cooper SJ. Aligned Ionogel Electrolytes for High-Temperature Supercapacitors. Adv. Sci. 2019; 6: 1801337. https://doi.org/10.1002/advs.201801337.
[215]Liu X, Wang B, Jin Z, Wang H, Wang Q. Elastic ionogels with freeze-aligned pores exhibit enhanced electrochemical performances as anisotropic electrolytes of all-solid-state supercapacitors. J. Mater. Chem. A 2015; 3: 15408-15412. https://doi.org/10.1039/c5ta03184b.
[216]Peng X, Liu H, Yin Q, Wu J, Chen P, Zhang G, Liu G, Wu C, Xie Y. A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat. Commun. 2016; 7: 11782. https://doi.org/10.1038/ncomms11782.
[217]Zhang X, Kar M, Mendes TC, Wu Y, MacFarlane DR. Supported Ionic Liquid Gel Membrane Electrolytes for Flexible Supercapacitors. Adv. Energy Mater. 2018; 8: 1702702. https://doi.org/10.1002/aenm.201702702.
[218]Nandi AK, Chatterjee DP. Hybrid polymer gels for energy applications. J. Mater. Chem. A 2023; 11: 12593-12642. https://doi.org/10.1039/d2ta09525d.
[219]Mohan AMV. Wearable Energy Storage Devices. deGruyter, Berlin 2021
[220]Dubal DP, Chodankar NR, Kim DH, Gomez-Romero P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 2018; 47: 2065-2129. https://doi.org/10.1039/c7cs00505a.
[221]Flexible Supercapacitor Nanoarchitectonics (Inamuddin, M.I. Ahamed,R. Boddula, T. Altalhi Eds.) Scrivener Publishing, Beverly 2021.
[222]Liu X, Wu D, Wang H, Wang Q. Self-recovering tough gel electrolyte with adjustable supercapacitor performance. Adv. Mater. 2014; 26: 4370-4375. https://doi.org/10.1002/adma.201400240.
[223]Xue X, Wan L, Li W, Tan X, Du X, Tong Y. A Self-Healing Gel Polymer Electrolyte, Based on a Macromolecule Cross-Linked Chitosan for Flexible Supercapacitors. Gels 2023; 9: 8. https://doi.org/10.3390/gels9010008.
[224]Huo P, Ni S, Hou P, Xun Z, Liu Y, Gu J. A crosslinked soybean protein isolate gel polymer electrolyte based on neutral aqueous electrolyte for a high-energy-density supercapacitor. Polymers 2019; 11: 863. https://doi.org/10.3390/polym11050863.
[225]Xun Z, Liu Y, Gu J, Liu L, Huo P. A biomass-based redox gel polymer electrolyte for improving energy density of flexible supercapacitor. J. Electrochem. Soc. 2019; 166: A2300-A2312. https://doi.org/10.1149/2.1571910jes.
[226]Na R, Wang X, Lu N, Huo G, Lin H, Wang G. Novel egg white gel polymer electrolyte and a green solid-state supercapacitor derived from the egg and rice waste. Electrochim. Acta 2018; 274: 316-325. https://doi.org/10.1016/j.electacta.2018.04.127.
[227]Leones R, Sabadini RC, Esperança JMSS, Pawlicka A, Silva MM. Effect of storage time on the ionic conductivity of chitosan-solid polymer electrolytes incorporating cyano-based ionic liquids. Electrochim. Acta 2017; 232: 22-29. https://doi.org/10.1016/j.electacta.2017.02.053.
[228]Ye T, Li D, Liu H, She X, Xia Y, Zhang S, Zhang H, Yang D. Seaweed Biomass-Derived Flame-Retardant Gel Electrolyte Membrane for Safe Solid-State Supercapacitors. Macromolecules 2018; 51: 9360-9367. https://doi.org/10.1021/acs.macromol.8b01955.
[229]Moon WG, Kim GP, Lee M, Song HD, Yi J. A biodegradable gel electrolyte for use in high-performance flexible supercapacitors. ACS Appl. Mater. Interfaces 2015; 7: 3503-3511. https://doi.org/10.1021/am5070987.
[230]Lota G, Fic K, Frackowiak E. Alkali metal iodide/carbon interface as a source of pseudocapacitance. Electrochem .Commun. 2011; 13: 38-41. https://doi.org/10.1016/j.elecom.2010.11.007.
[231]Yu D, Li X, Xu J. Safety regulation of gel electrolytes in electrochemical energy storage devices. Sci. China Mater. 2019; 62: 1556-1573. https://doi.org/10.1007/s40843-019-9475-4.
[232]Ji Y, Li S, Li G, Xu J, Zuo D, Zhang H. Preparation and electrochemical properties of SPEEK/PSF based membrane for supercapacitors. Mater. Res. Expr. 2019; 6: 105538. https://doi.org/10.1088/2053-1591/ab406c.
[233]Wang M, Fan L, Qin G, Hu X, Wang Y, Wang C, Yang J, Chen Q. Flexible and low temperature resistant semi-IPN network gel polymer electrolyte membrane and its application in supercapacitor. J. Membr. Sci. 2020; 597: 117740. https://doi.org/10.1016/j.memsci.2019.117740.
[234]Yong H, Park H, Jung J, Jung C. A fundamental approach to design of injectable high-content gel polymer electrolyte for activated carbon electrode supercapacitors. J. Ind. Eng. Chem. 2019; 76: 429-436. https://doi.org/10.1016/j.jiec.2019.04.009.
[235]Sun K, Ran F, Zhao G, Zhu Y, Zheng Y, Ma M, Zheng X, Ma G, Lei Z. High energy density of quasi-solid-state supercapacitor based on redox-mediated gel polymer electrolyte. RSC Adv. 2016; 6: 55225-55232. https://doi.org/10.1039/c6ra06797b.
[236]Le PA, Nguyen VT, Yen PJ, Tseng TY, Wie KH. A new redox phloroglucinol additive incorporated gel polymer electrolyte for flexible symmetrical solid-state supercapacitors. Sustainable Energy Fuels 2019; 3: 1536-1544. https://doi.org/10.1039/c9se00011a.
[237]Tang X, Lui YH, Merhi AR, Chen B, Ding S, Zhang B, Hu S. Redox-Active Hydrogel Polymer Electrolytes with Different pH Values for Enhancing the Energy Density of the Hybrid Solid-State Supercapacitor. ACS Appl. Mater. Interf. 2017; 9: 44429-44440. https://doi.org/10.1021/acsami.7b11849.
[238]Feng E, Gao W, Li J, Wei J, Yang Q, Li Z, Ma X, Zhang T, Yang Z. Stretchable, Healable, Adhesive, and Redox-Active Multifunctional Supramolecular Hydrogel-Based Flexible Supercapacitor. ACS Sustainable Chem. Eng. 2020; 8: 3311-3320. https://doi.org/10.1021/acssuschemeng.9b07153.
[239]Ye T, Li L, Zhang Y. Recent Progress in Solid Electrolytes for Energy Storage Devices. Adv. Funct. Mater. 2020; 30: 2000077. https://doi.org/10.1002/adfm.202000077.
[240]Samui AB, Sivaraman P. Solid polymer electrolytes for supercapacitors. in: Polymer Electrolytes: Fundamentals and Applications (C. Sequeira, D. Santos Eds.) Woodhead Publishing, Cambridge 2010, p. 431-470. https://doi.org/10.1533/9781845699772.2.431.
[241]Ainiya L. The recent advances on potential solid electrolytes for all-solid-state supercapacitors: A short review. J. Phys. Conf. Ser. 2019; 1417: 012031. https://doi.org/10.1088/1742-6596/1417/1/012031.
[242]Fang X, Yao D. An overview of solid-like electrolytes for supercapacitors. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). 2013; 6 A: 1-10 (IMECE2013-64069).
[243]Gray FM. Solid Polymer Electrolytes. VCH, Weinheim 1991.
[244]Park KW, Ahn HJ, Sung YE. All-solid-state supercapacitor using a Nafion© polymer membrane and its hybridization with a direct methanol fuel cell. J. Power Sources 2002; 109: 500-506. https://doi.org/10.1016/S0378-7753(02)00165-9.
[245]Li J, Qiao J, Lian K. Hydroxide ion conducting polymer electrolytes and their applications in solid supercapacitors: A review. Energy Stor. Mater. 2020; 24: 6-21. https://doi.org/10.1016/j.ensm.2019.08.012.
[246]Rajeevan S, John S, George SC. Polyvinylidene fluoride: A multifunctional polymer in supercapacitor applications. J. Power Sources 2021; 504: 230037. https://doi.org/10.1016/j.jpowsour.2021.230037.
[247]Lufrano F, Staiti P. Conductivity and capacitance properties of a supercapacitor based on Nafion electrolyte in a nonaqueous system. Electrochem. Solid State Lett. 2004; 7: A447-A450. https://doi.org/10.1149/1.1808095.
[248]Staiti P, Lufrano F. Design, fabrication, and evaluation of a 1.5 F and 5 V prototype of solid-state electrochemical supercapacitor. J. Electrochem. Soc. 2005; 152: A617-A621. https://doi.org/10.1149/1.1859614.
[249]Li L, Lu N, Jiang D, Chen Z, Zhang W, Zheng E, Zhu X, Wang G. A universal strategy to improve interfacial kinetics of solid supercapacitors used in high temperature. J. Coll. Interf. Sci. 2021; 586: 110-119. https://doi.org/10.1016/j.jcis.2020.10.075.
[250]Liu J, Khanam Z, Ahmed S, Wang H, Wang T, Song S. A study of low-temperature solid-state supercapacitors based on Al-ion conducting polymer electrolyte and graphene electrodes. J. Power Sources 2021; 488: 229461. https://doi.org/10.1016/j.jpowsour.2021.229461.
[251]Yong H, Park H, Jung C. Quasi-solid-state gel polymer electrolyte for a wide temperature range application of acetonitrile-based supercapacitors. J. Power Sources 2020; 447: 227390. https://doi.org/10.1016/j.jpowsour.2019.227390.
[252]Ngai KS, Ramesh S, Ramesh K, Juan JC. A review of polymer electrolytes: fundamental, approaches and applications. Ionics 2016; 22: 1259-1279. https://doi.org/10.1007/s11581-016-1756-4.
[253]Tien CP, Teng H. Efficient ion transport in activated carbon capacitors assembled with gelled polymer electrolytes based on poly(ethylene oxide) cured with poly(propylene oxide) diamines. J. Taiwan Inst. Chem. Eng. 2009; 40: 452-456. https://doi.org/10.1016/j.jtice.2008.11.005.
[254]Sivaraman P, Thakur A, Kushwaha RK, Ratna D, Samui AB. Poly(3-methyl thiophene)-activated carbon hybrid supercapacitor based on gel polymer electrolyte. Electrochem. Solid State Lett. 2006; 9: A435-A438. https://doi.org/10.1149/1.2213357.
[255]Deshagani S, Naskar I, Padval GG, Ghosal P, Deepa M. Electrical Conduction in CoWO4 Flanked by Carbon and ZnFe2O4 Nanoparticulate Assembly and a Poly(ethylene oxide) Gel for Enhanced Electrochemical Activity. ACS Appl. Energy Mater.2022; 5: 13520-13534. https://doi.org/10.1021/acsaem.2c02189.
[256]Han JH, Lee JY, Suh DH, Hong YT, Kim TH. Electrode-impregnable and cross-linkable poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock polymer electrolytes with high ionic conductivity and a large voltage window for flexible solid-state supercapacitors. ACS Appl. Mater. Interf. 2017; 9: 33913-33924. https://doi.org/10.1021/acsami.7b09909.
[257]Karaman B, Cevik E, Bozkurt A. Novel flexible Li-doped PEO/copolymer electrolytes for supercapacitor application. Ionics 2019; 25: 1773-1781. https://doi.org/10.1007/s11581-019-02854-4.
[258]Mitra S, Shukla AK, Sampath S. Electrochemical capacitors with plasticized gel-polymer electrolytes. J Power Sources 2001; 101: 213-218. https://doi.org/10.1016/S0378-7753(01)00673-5.
[259]Ghasemi M, Fahimi Z, Moradlou O, Sovizi MR. Porous gel polymer electrolyte for the solid state metal oxide supercapacitor with a wide potential window. J. Taiwan Inst. Chem. Eng. 2021; 118: 223-231. https://doi.org/10.1016/j.jtice.2020.12.020.
[260]Liu X, Osaka T. Properties of electric double-layer capacitors with various polymer gel electrolytes. J. Electrochem. Soc. 1997; 144: 3066-3071. https://doi.org/10.1149/1.1837960.
[261]Huang CW, Wu CA, Hou SS, Kuo PL, Hsieh CT, Teng H. Gel electrolyte derived from poly(ethylene glycol) blending poly(acrylonitrile) applicable to roll-to-roll assembly of electric double layer capacitors. Adv. Funct. Mater. 2012, 22: 4677-4685: https://doi.org/10.1002/adfm.201201342.
[262]Latif FA, Zailani NAM, Al Shukaili ZSM, Zamri SFM, Kasim NAM, Rani MSA, Norrrahim MNF. Review of poly (methyl methacrylate) based polymer electrolytes in solid-state supercapacitors. Int. J. Electrochem. Sci. 2022; 17: 22013. https://doi.org/10.20964/2022.01.44.
[263]Mitra S, Shukla AK, Sampath S. Electrochemical capacitors based on sol-gel derived, ionically conducting composite solid electrolytes. Electrochem. Solid State Lett. 2003; 6: A149-A153. https://doi.org/10.1149/1.1583371.
[264]Yang Y, Cao B, Li H, Liu H. A flexible polycation-type anion-dominated conducting polymer as potential all-solid-state supercapacitor film electrolyte. Chem. Eng. J. 2017; 330: 753-756. https://doi.org/10.1016/j.cej.2017.08.012.
[265]Moon SJ, Min HJ, Lee CS, Kang DR, Kim JH. Adhesive, free-standing, partially fluorinated comb copolymer electrolyte films for solid flexible supercapacitors. Chem. Eng. J. 2022; 429: 132240. https://doi.org/10.1016/j.cej.2021.132240.
[266]Mun WJ, Kim B, Moon SJ, Kim JH. Multifunctional, bicontinuous, flexible comb copolymer electrolyte for solid-state supercapacitors. Chem. Eng. J. 2023; 454: 140386. https://doi.org/10.1016/j.cej.2022.140386.
[267]Na R, Huo P, Zhang X, Zhang S, Du Y, Zhu K, Lu Y, Zhang M, Luan J, Wang G. A flexible solid-state supercapacitor based on a poly(aryl ether ketone)-poly(ethylene glycol) copolymer solid polymer electrolyte for high temperature applications RSC Adv.2016; 6: 65186-65195. https://doi.org/10.1039/c6ra11202a.
[268]Vineeth SK, Sreeram P, Vlad A, Joy R, Raghavan P, Pullanchiyodan A. Polymer blend nanocomposite electrolytes for advanced energy storage applications in: Polymer blend nanocomposites for energy storage applications. (S. Thomas, A.R. Ajitha, M. Jaroszewskie, Eds.), Elsevier, Amsterdam 2023, p. 203-238.
[269]Hu F, Liu Y, Shao W, Zhang T, Liu S, Liu D, Zhang S, Jian X. Novel poly(arylene ether ketone)/poly(ethylene glycol)-grafted poly(arylene ether ketone) composite microporous polymer electrolyte for electrical double-layer capacitors with efficient ionic transport. RSC Adv. 2021; 11: 14814-14823. https://doi.org/10.1039/d1ra01047f.
[270]Mao T, Wang S, Wang X, Liu F, Li J, Chen H, Wang D, Liu G, Xu J, Wang Z. High Temperature and All-Solid-State Flexible Supercapacitors with Excellent Long-Term Stability Based on Porous Polybenzimidazole/Functional Ionic Liquid Electrolyte. ACS Appl. Mater. Interf. 2019; 11: 17742-17750. https://doi.org/10.1021/acsami.9b00452.
[271]Na R, Huo G, Zhang S, Huo P, Du Y, Luan J, Zhu K, Wang G. A novel poly(ethylene glycol)-grafted poly(arylene ether ketone) blend micro-porous polymer electrolyte for solid-state electric double layer capacitors formed by incorporating a chitosan-based LiClO4 gel electrolyte. J. Mater. Chem. A 2016, 4. 18116-18127. https://doi.org/10.1039/c6ta07846j.
[272]Torres FG, De-la-Torre GE. Algal-based polysaccharides as polymer electrolytes in modern electrochemical energy conversion and storage systems: A review. Carbohyd. Polym. Technol. Appl. 2021; 2: 100023. https://doi.org/10.1016/j.carpta.2020.100023.
[273]Qiu F, Huang Y, Hu X, Li B, Zhang X, Luo C, Li X, Wang M, Wu Y, Cao H. An Ecofriendly Gel Polymer Electrolyte Based on Natural Lignocellulose with Ultrahigh Electrolyte Uptake and Excellent Ionic Conductivity for Alkaline Supercapacitors. ACS Appl. Energy Mater. 2019; 2: 6031-6042. https://doi.org/10.1021/acsaem.9b01150.
[274]Gopalakrishnan A, Badhulika S. Flexible supercapacitors based on 2D materials. in: Fundamentals and Supercapacitor Applications of 2D Materials (C.S. Rout, D.J. Late Eds.) Elsevier, Amsterdam 2021, p. 253-310. https://doi.org/10.1016/B978-0-12-821993-5.00013-3.
[275]Javaid A, Ho KKC, Bismarck A, Steinke JHG, Shaffer MSP, Greenhalgh ES. Carbon fibre-reinforced poly(ethylene glycol) diglycidylether based multifunctional structural supercapacitor composites for electrical energy storage applications. J. Compos. Mater. 2016; 50, 2155-2163. https://doi.org/10.1177/0021998315602324.
[276]Qian H, Kucernak AR, Greenhalgh ES, Bismarck A, Shaffer MSP. Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric. ACS Appl.Mater.Interf.. 2013; 5: 6113-6122. https://doi.org/10.1021/am400947j.
[277]Peng J, Zhang W, Wang S, Huang Y, Wang JZ, Liu HK, Dou SX, Chou SL. The Emerging Electrochemical Activation Tactic for Aqueous Energy Storage: Fundamentals, Applications, and Future. Adv. Funct. Mater. 2022; 32: 2111720. https://doi.org/10.1002/adfm.202111720.
[278]Pappu S, Rao TN, Bulusu SV, Nanaji K. Sustainable Energy Low-carbon Supercapacitors: Towards Sustainability in: Energy Storage Devices Vol. No.2 (M.B. Ahamed, C.M. Hussain, K. Deshmukh Eds.) The Royal Society of Chemistry, Cambridge 2024, p. 1-33.

Copyright © 2024 Rudolf Holze Creative Commons License Publishing time:2024-02-26
This work is licensed under a Creative Commons Attribution 4.0 International License