Structural Modification of Partially Ni-substituted MnHCF Cathode Material for Aqueous Zn-ion Batteries

Mariam Maisuradze ( Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Bologna 40136, Italy. )

Min Li ( Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Bologna 40136, Italy. )

Mattia Gaboardi ( Elettra Sincrotrone Trieste, Trieste 34149, Italy. )

Giuliana Aquilanti ( Elettra Sincrotrone Trieste, Trieste 34149, Italy. )

Jasper Rikkert Plaisier ( Elettra Sincrotrone Trieste, Trieste 34149, Italy. )

Marco Giorgetti ( Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Bologna 40136, Italy. )


The initial capacity fading and electrochemical profile modification of the nickel substituted manganese hexacyanoferrate cathode material in aqueous zinc-ion batteries was investigated. The outcome of the electrochemical tests suggested the structural transformation of the material; therefore, further characterization has been performed with the synchrotron-based x-ray absorption spectroscopy and powder x-ray diffraction. Indeed, the alteration of the structure was evident with both techniques. The dissolution of Mn and Ni was observed, alongside with the substitution of Mn with Zn. Furthermore, a new Zn-containing phase formation, and the modification of Mn species were demonstrated.


Aqueous batteries; Zn-ion batteries; X-ray absorption spectroscopy; X-ray diffraction; Operando measurement; Manganese hexacyanoferrate

Full Text



[1] Contemporary Amperex Technology Co., Ltd. Ningde, Fujian, China. CATL Unveils Its Latest Breakthrough Technology by Releasing Its First Generation of Sodium-ion Batteries. Available from: [Last accessed on 20 November 2023]
[2] Fang G, Zhou J, Pan A, et al. Recent advances in aqueous zinc-ion batteries. ACS Energy Letters, 2018;3(10):2480-2501.
[3] Konarov A, Voronina N, Jo JH, et al. Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Letters, 2018;3(10):2620-2640.
[4] Grignon E, Battaglia AM, Schon TB, et al. Aqueous zinc batteries: design principles toward organic cathodes for grid applications. IScience, 2022;25(5):104204.
[5] Qian J, Wu C, Cao Y, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Advanced Energy Materials, 2018;8(17):1702619.
[6] Shibata T and Moritomo Y. Ultrafast cation intercalation in nanoporous nickel hexacyanoferrate. Chemical Communications, 2014;50(85):12941-12943.
[7] Takachi M, Fukuzumi Y and Moritomo Y. Na+ diffusion kinetics in nanoporous metal-hexacyanoferrates. Dalton Transactions, 2016;45(2):458-461.
[8] You Y, Wu XL, Yin YX, et al. A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. Journal of Materials Chemistry A, 2013;1(45):14061-14065.
[9] Wessells CD, Peddada SV, Huggins RA, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Letters, 2011;11(12):5421-5425.
[10] Imanishi N, Morikawa T, Kondo J, et al. Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery. Journal of Power Sources, 1999;79(2):215-219.
[11] Eftekhari A. Potassium secondary cell based on Prussian blue cathode. Journal of Power Sources, 2004;126(1-2):221-228.
[12] Wessells CD, Huggins RA and Cui Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nature Communications, 2011;2(1):550.
[13] Wang RY, Shyam B, Stone KH, et al. Reversible multivalent (monovalent, divalent, trivalent) ion insertion in open framework materials. Advanced Energy Materials, 2015;5(12):1401869.
[14] Mizuno Y, Okubo M, Hosono E, et al. Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes. Journal of Materials Chemistry A, 2013;1(42):13055-13059.
[15] Park H, Lee Y, Ko W, et al. Review on cathode materials for sodium-and potassium-ion batteries: structural design with electrochemical properties. Batteries & Supercaps, 2023;6(3):e202200486.
[16] Li M, Bina A, Maisuradze M, et al. Symmetric aqueous batteries of titanium hexacyanoferrate in Na+, K+, and Mg2+ media. Batteries, 2021;8(1):1.
[17] Li M, Maisuradze M, Sciacca R, et al. A structural perspective on Prussian blue analogues for aqueous zinc-ion batteries. Batteries & Supercaps, 2023;6(11):e202300340.
[18] Jia Z, Wang B and Wang Y. Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. Materials Chemistry and Physics, 2015;149:601-606.
[19] Li M, Gaboardi M, Mullaliu A, et al. Influence of vacancies in manganese hexacyanoferrate cathode for organic Na-ion batteries: a structural perspective. ChemSusChem, 2023;16(12):e202300201.
[20] Cao T, Zhang F, Chen M, et al. Cubic manganese potassium hexacyanoferrate regulated by controlling of the water and defects as a high-capacity and stable cathode material for rechargeable aqueous zinc-ion batteries. ACS Applied Materials & Interfaces, 2021;13(23):26924-26935.
[21] Deng W, Li Z, Ye Y, et al. Zn2+ induced phase transformation of K2MnFe(CN)6 boosts highly stable zinc-ion storage. Advanced Energy Materials, 2021;11(31):2003639.
[22] Ni G, Hao Z, Zou G, et al. Potassium manganese hexacyanoferrate with improved lifespan in Zn(CF3SO3)2 electrolyte for aqueous zinc-ion batteries. Sustainable Energy & Fuels, 2022;6(5):1353-1361.
[23] Lu Y, Wang L, Cheng J, et al. Prussian blue: a new framework of electrode materials for sodium batteries. Chemical Communications, 2012;48(52):6544.
[24] Mullaliu A, Asenbauer J, Aquilanti G, et al. Highlighting the reversible manganese electroactivity in Na‐rich manganese hexacyanoferrate material for Li‐ and Na‐ion storage. Small Methods, 2019;4(1):1900529.
[25] Gao C, Lei Y, Wei Y, et al. Coexistence of two coordinated states contributing to high-voltage and long-life Prussian blue cathode for potassium ion battery. Chemical Engineering Journal, 2022;431(1):133926.
[26] Zhou J, Wang Y Wang Z, et al. Co/Mn ratio-regulated hexacyanoferrates as a long-life and high-rate cathode for aqueous Zn-ion batteries. Journal of Alloys and Compounds, 2024;976:173158.
[27] Fu H, Liu C, Zhang C, et al. Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping. Journal of Material Chemistry A, 2017;5(20):9604-9610.
[28] Hu P, Peng W. Wang B, et al. Concentration-gradient Prussian blue cathodes for Na-ion batteries. ACS Energy Letters, 2020;5(1):100-108.
[29] Yang D, Xu J, Liao XZ, et al., Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries. Chemical Communications, 2014;50(87):13377-13380.
[30] Maisuradze M, Li M, Aquilanti G, et al. Characterization of partially Ni substituted manganese hexacyanoferrate cathode material. Materials Letters, 2023;330:133259.
[31] Cicco A Di, Aquilanti G, Minicucci M, et al. Novel XAFS capabilities at ELETTRA synchrotron light source. Journal of Physics: Conference Series, 2009;190:012043.
[32] Ravel B and Newville M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 2005;12(4):537-541.
[33] Rebuffi L, Plaisier JR, Abdellatief M, et al. MCX: a synchrotron radiation beamline for X‐ray diffraction line profile analysis. Zeitschrift für Anorganische und Allgemeine Chemie, 2014;640(15):3100-3106.
[34] Plaisier JR, Nodari L, Gigli L, et al. The X-ray diffraction beamline MCX at Elettra: a case study of non-destructive analysis on stained glass. ACTA IMEKO, 2017;6(3):71.
[35] EL-CELL GmbH. ECC-Opto-Std-Aqu. Test cell for optical characterization in the reflective mode with face-to-face arrangement of electrodes. For aqueous electrochemistry. Accessed January 24, 2024.
[36] Toby BH and Von Dreele RB. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 2013;46(2):544-549.
[37] Hou Z, Zhang X, Li X, et al. Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. Journal of Materials Chemistry A Mater. 2017;5(2):730-738.
[38] Li M, Sciacca R, Maisuradze M, et al. Electrochemical performance of manganese hexacyanoferrate cathode material in aqueous Zn-ion battery. Electrochimica Acta, 2021;400:139414.
[39] Oliver-Tolentino MA, Vázquez-Samperio J, Arellano-Ahumada SN, et al. Enhancement of stability by positive disruptive effect on Mn-Fe charge transfer in vacancy-free Mn-Co hexacyanoferrate through a charge/discharge process in aqueous Na-ion batteries. The Journal of Physical Chemistry C, 2018;122(36):20602-20610.
[40] Huang C, Wu C, Zhang Z, et al. Crystalline and amorphous MnO2 cathodes with open framework enable high-performance aqueous zinc-ion batteries. Frontiers of Materials Science, 2021;15(2):202-215.
[41] Alfaruqi MH, Mathew V, Gim J, et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chemistry of Materials, 2015;27(10):3609-3620.
[42] Mullaliu A, Conti P, Aquilanti G, et al. Operando XAFS and XRD study of a Prussian blue analogue cathode material: iron hexacyanocobaltate. Condensed Matter, 2018;3(4):36.
[43] Rodríguez-Hernández J, Reguera E, Lima E, et al. An atypical coordination in hexacyanometallates: structure and properties of hexagonal zinc phases. Journal of Physics and Chemistry of Solids, 2007;68(9):1630-1642.

Copyright © 2024 Mariam Maisuradze, Min Li, Mattia Gaboardi, Giuliana Aquilanti, Jasper Rikkert Plaisier, Marco Giorgetti Creative Commons License Publishing time:2024-02-26
This work is licensed under a Creative Commons Attribution 4.0 International License