A Review of Mechanical Characterization Techniques for Ultrathin Films Beyond Two-Dimensional Materials

Yunfeng Yan ( State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. )

Jiayi He ( Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510641, China. )

Wenqi Ji ( Emergency Management College, Nanjing University of Information Science & Technology, Nanjing 210044, China. )

Zhuorui Hu ( School of Microelectronics, South China University of Technology, Guangzhou 510641, China. )

Jiaying Xiao ( School of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China. )

Changlin Li ( School of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China. )

Hongxi He ( School of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China. )

Ximing Wang ( School of Electronic and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China. )

Jiawen Xu ( Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China. )

Yuxuan Gong ( School of Mechanical and Power Engineering, Jiangsu University Jingjiang College, Zhenjiang 212028, China. )

Nanlong Sun ( School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China. )

https://doi.org/10.37155/2717-526X-0601-5

Abstract

Thin films, thinner than the diameter of a human hair (~90µm and below), hold considerable promise across various applications such as flexible electronics, thin film devices, and biomedical applications due to their distinct characteristics. At this juncture, the mechanical properties of these films play a pivotal role as they underpin the stability of these applications. However, evaluating the mechanical properties of these thin films poses a significant technical challenge owing to their minimal thickness, where conventional technologies often prove inadequate. Over the past decade, notable advancements have been made in characterization techniques to surmount this challenge, particularly for ultra-thin films. This review focuses on recently developed experimental techniques used for characterizing the mechanical properties of thin films thinner than the diameter of a human hair, but beyond two-dimensional materials. We introduce these experimental testing techniques, analyze their pros and cons, and discuss their main applications. The mechanical properties of ultrathin films beyond 2D materials discussed in this study include elastic modulus, hardness, in-plane strength, and fracture toughness. We conclude this review article with our perspective on the applications and future research directions of thin films in the current state of the field.

Keywords

Thin film; Mechanical property; Nanomechanics; Mechanical characterization

Full Text

PDF

References

[1] Borchert JW, Borchert JW, Zschieschang U, et al. Flexible low-voltage high-frequency organic thin-film transistors. Sci Adv. 2020;6(21). https://doi.org/10.1126/SCIADV.AAZ5156
[2] Magari Y, Kataoka T, Yeh W, Furuta M. High-mobility hydrogenated polycrystalline In2O3 (In2O3:H) thin-film transistors. Nat. Commun. 2022 13:1. 2022;13(1):1-8. https://doi.org/10.1038/s41467-022-28480-9
[3] Zschieschang U, Waizmann U, Weis J, Borchert JW, Klauk H. Nanoscale flexible organic thin-film transistors. Sci Adv. 2022;8(13):9845. https://doi.org/10.1126/SCIADV.ABM9845
[4] Fratelli I, Ciavatti A, Zanazzi E, et al. Direct detection of 5-MeV protons by flexible organic thin-film devices. Sci Adv. 2021;7(16):4462-4478. https://doi.org/10.1126/SCIADV.ABF4462
[5] Hellenbrand M, Bakhit B, Dou H, et al. Thin film design of amorphous hafnium oxide nanocomposites enabling strong interfacial resistive switching uniformity. Sci Adv. 2023;9(25). https://doi.org/10.1126/SCIADV.ADG1946
[6] Atxabal A, Arnold T, Parui S, et al. Tuning the charge flow between Marcus regimes in an organic thin-film device. Nat. Commun. 2019;10(1):1-7. https://doi.org/10.1038/s41467-019-10114-2
[7] Kwon O, Moon S, Yun Y, et al. Highly efficient thin-film 930 nm VCSEL on PDMS for biomedical applications. Sci. Rep. 2023;13(1):1-7. https://doi.org/10.1038/s41598-023-27589-1
[8] Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902-907. https://doi.org/10.1038/s41598-023-27589-1
[9] Dharmadhikari VS. Characterization of plasma-deposited silicon nitride coating used for integrated circuit encapsulation. Thin Solid Films. 1987;153(1-3):459-468. https://doi.org/10.1016/0040-6090(87)90205-7
[10] Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564-1583. https://doi.org/10.1557/JMR.1992.1564
[11] Jonnalagadda K, Cho SW, Chasiotis I, Friedmann T, Sullivan J. Effect of intrinsic stress gradient on the effective mode-I fracture toughness of amorphous diamond-like carbon films for MEMS. J Mech Phys Solids. 2008;56:388-401. https://doi.org/10.1016/j.jmps.2007.05.013
[12] Kim JH, Nizami A, Hwangbo Y, et al. Tensile testing of ultra-thin films on water surface. Nat. Commun. 2013;4(1):1-6. https://doi.org/10.1038/ncomms3520
[13] Liu Y, Chen YC, Hutchens S, Lawrence J, Emrick T, Crosby AJ. Directly measuring the complete stress-Strain response of ultrathin polymer films. Macromolecules. 2015;48(18):6534-6540. https://doi.org/10.1021/ACS.MACROMOL.5B01473
[14] Bay RK, Shimomura S, Liu Y, Ilton M, Crosby AJ. Confinement Effect on Strain Localizations in Glassy Polymer Films. Macromolecules. 2018;51(10):3647-3653. https://doi.org/10.1021/ACS.MACROMOL.8B00385
[15] Bay RK, Crosby AJ. Uniaxial Extension of ultrathin freestanding polymer films. ACS Macro Lett. 2019;8(9):1080-1085. https://doi.org/10.1021/ACSMACROLETT.9B00408
[16] Galuska LA, Muckley ES, Cao Z, et al. SMART transfer method to directly compare the mechanical response of water-supported and free-standing ultrathin polymeric films. Nat. Commun. 2021;12(1):1-11. https://doi.org/10.1038/s41467-021-22473-w
[17] Wang G, Hou H, Yan Y, et al. Recent advances in the mechanics of 2D materials. Int. J. Extreme Manuf. 2023;5(3). https://doi.org/10.1088/2631-7990/accda2
[18] Jen SU, Wu TC. Young’s modulus and hardness of Pd thin films. Thin Solid Films. 2005; 492(1-2):166-172. https://doi.org/10.1016/j.tsf.2005.06.048
[19] Lesage J, Pertuz A, Puchi-Cabrera ES, Chicot D. A model to determine the surface hardness of thin films from standard micro-indentation tests. Thin Solid Films. 2005; 492(1-2):232-238. https://doi.org/10.1016/j.tsf.2005.09.194
[20] Bhattacharya AK, Nix WD. Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates. Int J Solids SlrUClures. 1988;24(12):1287-1298. https://doi.org/10.1016/0020-7683(88)90091-1
[21] Gao Y, Kim S, Zhou S, et al. Elastic coupling between layers in two-dimensional materials. Nat Mater. 2015;14(7):714-720. https://doi.org/10.1038/nmat4322
[22] Hertz H. Ueber die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik.1882;(92):156-171. https://doi.org/10.1515/CRLL.1882.92.156
[23] Johnson Kenneth Langstreth , Kendall Kevin and Roberts A. D. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. 1971;324(1558):301-313. https://doi.org/10.1098/rspa.1971.0141
[24] Derjaguin B V., Muller VM, Toporov YP. Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci. 1975;53(2):314-326. https://doi.org/10.1016/0021-9797(75)90018-1
[25] Zhao BX, Arunbabu D, McDonald B. Polymers, Adhesion, and Paper Materials. 2013, 501-543. https://doi.org/10.1002/9781118505175.ch12
[26] Jönsson B, Hogmark S. Hardness measurements of thin films. Thin Solid Films. 1984;114(3):257-269. https://doi.org/10.1016/0040-6090(84)90123-8
[27] Doerner MF, Nix WD. A method for interpreting the data from depth-sensing indentation instruments. J Mater Res. 1986;1(4):601-609. https://doi.org/10.1557/JMR.1986.0601
[28] King RB. Elastic analysis of some punch problems for a layered medium. Int J Solids Struct. 1987;23(12):1657-1664. https://doi.org/10.1016/0020-7683(87)90116-8
[29] Saha R, Nix WD. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 2002;50(1):23-38. https://doi.org/10.1016/S1359-6454(01)00328-7
[30] Huajian G, Cheng-Hsin C, Jin L. Elastic contact versus indentation modeling of multi-layered materials. Int J Solids Struct. 1992;29(20):2471-2492. https://doi.org/10.1016/0020-7683(92)90004-D
[31] Zhou XY, Jiang ZD, Wang HR, Zhu Q. A Method to extract the intrinsic mechanical properties of soft metallic thin films based on nanoindentation continuous stiffness measurement technique. J Phys Conf Ser. 2006;48(1):1096. https://doi.org/10.1088/1742-6596/48/1/204
[32] Zhou B, Prorok BC. A discontinuous elastic interface transfer model of thin film nanoindentation. Exp Mech. 2010;50(6):793-801. https://doi.org/10.1007/s11340-009-9309-7
[33] Ma Y, Wang R cong, Xie X you. Influence of oxygen flow rate and annealing temperature on composition, microstructure and mechanical properties of Fe–O films by reactive magnetron sputtering. Vacuum. 2022;205:111426. https://doi.org/10.1016/j.vacuum.2022.111426
[34] Lekoui F, Hassani S, Amrani R, et al. Investigation of the deposition time effect on the structural, morphological, and mechanical properties of TiAlN protective thin films. Braz. J. Phys. 2022;52(6). https://doi.org/10.1007/s13538-022-01200-w
[35] Kim K, Park S, Kim T, Park Y, Sim GD, Lee D. Mechanical, electrical properties and microstructures of combinatorial Ni-Mo-W alloy films. J. Alloys Compd. 2022;919:165808. https://doi.org/10.1016/j.jallcom.2022.165808
[36] Boughrara N, Benzarti Z, Khalfallah A, Oliveira JC, Evaristo M, Cavaleiro A. Thickness-dependent physical and nanomechanical properties of AlxGa1-xN thin films. Mater. Sci. Semicond. Process. 2022;151:107023 https://doi.org/10.1016/j.mssp.2022.107023
[37] Manica D, Ion V, Sopronyi M, Andrei F, Bonciu A, Scarisoreanu N. Mechanical properties characterization for thin layers oxide (Al2O3), deposited by PLD-large area. Appl Phys A Mater Sci Process. 2022;128(11). https://doi.org/10.1007/s00339-022-06098-4
[38] Hsiao CC, Yu SY, Maruyama K, Kawakami Y, Narita F. cite this article: Kohei Maruyama et al. Jpn. J. Appl. Phys. 2022;61:1011. https://doi.org/10.35848/1347-4065/ac7d96
[39] Dziri A, Montagne A, Roudet F, Ziouche K, Chicot D. Martens hardness of constantan thin films on (100) Si wafer: Improvement in contact area function in nanoindentation. Thin Solid Films. 2023;768. https://doi.org/10.1016/j.tsf.2023.139712
[40] Valour A, Higuita MAU, Guillonneau G, et al. Optical, electrical and mechanical properties of TiN thin film obtained from a TiO2 sol-gel coating and rapid thermal nitridation. Surf Coat Technol. 2021;413. https://doi.org/10.1016/j.surfcoat.2021.127089
[41] Yang L, Chen Y, Xu Z, Toshiaki N, Xi Y, Ni Q. Effect of heat treatment on mechanical property of amorphous carbon films by magnetron sputtering. Diam Relat Mater. 2022;129. https://doi.org/10.1016/j.diamond.2022.109328
[42] Components P& MTSocietyTC, Institute of Electrical and Electronics Engineers, IMAPS All Asia Conference. 11th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT 2016) : Proceedings : October 26-28, 2016, Taipei.
[43] Li R, Li Y, Yan C, et al. Thickness-dependent and tunable mechanical properties of CaTiO3 dielectric thin films determined by nanoindentation technique. Ceram Int. 2020;46(14):22643-22649. https://doi.org/10.1016/j.ceramint.2020.06.027
[44] Garcia R. Nanomechanical mapping of soft materials with the atomic force microscope: Methods, theory and applications. Chem Soc Rev. 2020;49(16):5850-5884. https://doi.org/10.1039/d0cs00318b
[45] Park JY, Kwon S, Kim JH. Nanomechanical and charge transport properties of two-dimensional atomic sheets. Adv Mater Interfaces. 2014;1(3). https://doi.org/10.1002/admi.201300089
[46] Cortelli G, Patruno L, Cramer T, Murgia M, Fraboni B, De Miranda S. Atomic force microscopy nanomechanics of hard nanometer-thick films on soft substrates: insights into stretchable conductors. ACS Appl Nano Mater. 2021;4(8):8376-8382. https://doi.org/10.1021/acsanm.1c01590
[47] Lee D, Barber JR, Thouless MD. Indentation of an elastic half space with material properties varying with depth. Int J Eng Sci. 2009;47(11-12):1274-1283. https://doi.org/10.1016/j.ijengsci.2008.08.005
[48] Printz AD, Zaretski A V., Savagatrup S, Chiang ASC, Lipomi DJ. Yield point of semiconducting polymer films on stretchable substrates determined by onset of buckling. ACS Appl Mater Interfaces. 2015;7(41):23257-23264. https://doi.org/10.1021/ACSAMI.5B08628
[49] Huang H, Spaepen F. Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater, 2000;48(12): 3261-3269. https://doi.org/10.1016/S1359-6454(00)00128-2
[50] Amherst S, Dissertations D, Huang J. Wrinkling Of Floating Thin Polymer Films. Doctoral Dissertations. 1896. https://doi.org/10.7275/5671733
[51] Koo J, Lee S, Kim J, et al. Evaluating mechanical properties of 100nm-thick atomic layer deposited Al2O3 as a free-standing film. Scr Mater. 2020;187:256-261. https://doi.org/10.1016/j.scriptamat.2020.06.028
[52] Zhang S, Ocheje MU, Luo S, et al. Probing the viscoelastic property of pseudo free-standing conjugated polymeric thin films. Macromol Rapid Commun. 2018;39(14). https://doi.org/10.1002/MARC.201800092
[53] Zhang H, Sakagami D, Huang W, Kimura H, Okamura Y. Measurement and modelling of tensile moduli of polymer blend thin films with phase separated structures. Polymer (Guildf). 2020;190. https://doi.org/10.1016/j.polymer.2020.122233
[54] Saito M, Ito K, Yokoyama H. Mechanical properties of ultrathin polystyrene-b-polybutadiene-b-polystyrene block copolymer films: film thickness-dependent young’s modulus. Macromolecules. 2021;54(18):8538-8547. https://doi.org/10.1021/acs.macromol.1c01406
[55] Saito M, Ito K, Yokoyama H. Film thickness and strain rate dependences of the mechanical properties of polystyrene-b-polyisoprene-b-polystyrene block copolymer ultrathin films forming a spherical domain. Polymer (Guildf). 2022;258. https://doi.org/10.1016/j.polymer.2022.125302
[56] Kim YU, Ma BS, Kim Y, et al. Comparison of the mechanical properties of polymer blend and main-chain conjugated copolymer films with donor–acceptor heterojunctions. Chem. Eng. J. 2021;415. https://doi.org/10.1016/j.cej.2021.128952
[57] Oh SJ, Ma BS, Yang C, Kim TS. Intrinsic mechanical properties of free-standing SiNx thin films depending on PECVD conditions for controlling residual stress. ACS Appl Electron Mater. 2022;4(8):3980-3987. https://doi.org/10.1021/acsaelm.2c00623
[58] Keren S, Bukowski C, Barzilay M, et al. Mechanical behavior of hybrid thin films fabricated by sequential infiltration synthesis in water-rich environment. ACS Appl Mater Interfaces. 2023;15(40):47487-47496. https://doi.org/10.1021/acsami.3c09609
[59] Zhang S, Koizumi M, Cao Z, et al. Directly probing the fracture behavior of ultrathin polymeric films. ACS Polymers Au. 2021;1(1):16-29. https://doi.org/10.1021/acspolymersau.1c00005
[60] Kim KH, Jeong S, Kim HJ. Numerical and experimental analyses of the crack propagation in nanocomposite thin-films by using dynamic particle difference methods. Polymer (Guildf). 2022;240. https://doi.org/10.1016/j.polymer.2022.124527
[61] Pei D, An C, Zhao B, et al. Polyurethane-based stretchable semiconductor Nanofilms with High Intrinsic Recovery Similar to Conventional Elastomers. ACS Appl Mater Interfaces. Published online 2022. https://doi.org/10.1021/acsami.2c07445
[62] Beams J W, Walker W E, Morton Jr H S. Mechanical properties of thin films of silver. Phys. Rev. 1952, 87(3): 524-552. https://doi.org/10.1103/PhysRev.87.524.2
[63] Xiang Y, Chen X, Vlassak JJ. Plane-strain bulge test for thin films. J Mater Res. 2005;20(9):2360-2370. https://doi.org/10.1557/JMR.2005.0313
[64] Vlassak JJ, Nix WD. A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J Mater Res. 1992;7(12):3242-3249. https://doi.org/10.1557/JMR.1992.3242
[65] Kalkman AJ, Verbruggen AH, Janssen GCAM, Groen FH. A novel bulge-testing setup for rectangular free-standing thin films. Rev. Sci. Instrum. 1999;70(10):4026-4031. https://doi.org/10.1063/1.1150029
[66] Small MK, Nix WD. Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films. J Mater Res. 1992;7(6):1553-1563. https://doi.org/10.1557/JMR.1992.1553
[67] Pinyen Lin. The in-situ measurement of mechanical properties of multi-layer coatings. 1990. https://dspace.mit.edu/handle/1721.1/14102
[68] Rontu V, Nolvi A, Hokkanen A, Haeggström E, Kassamakov I, Franssila S. Elastic and fracture properties of free-standing amorphous ALD Al2O3 thin films measured with bulge test. Mater Res Express. 2018;5(4). https://doi.org/10.1088/2053-1591/aabbd5
[69] Mongkolsuttirat K, Smyth JR, McLean M, Brown WL, Vinci RP. The effects of solid solution and oxide dispersion alloying on the viscoelastic behavior of Au alloy thin films. Acta Mater. 2019;168:275-286. https://doi.org/10.1016/j.actamat.2019.02.023
[70] Tinoco HA, Holzer J, Pikálek T, et al. Determination of elastic parameters of Si3N4 thin films by means of a numerical approach and bulge tests. Thin Solid Films. 2019;672:66-74. https://doi.org/10.1016/j.tsf.2018.12.039
[71] Österlund E, Kinnunen J, Rontu V, Torkkeli A, Paulasto-Kröckel M. Mechanical properties and reliability of aluminum nitride thin films. J Alloys Compd. 2019;772:306-313. https://doi.org/10.1016/j.jallcom.2018.09.062
[72] Montinaro N, Lo Cicero U, D’Anca F, Bozzo E, Paltani S, Barbera M. Elastic characterization of nanometer-thick polymeric film for astrophysics application with an experimental-numerical method. J Astron Telesc Instrum Syst. 2023;9(03). https://doi.org/10.1117/1.jatis.9.3.034005
[73] Stafford CM, Harrison C, Beers KL, et al. A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat Mater. 2004;3(8):545-550. https://doi.org/10.1038/nmat1175
[74] Khang DY, Rogers JA, Lee HH. Mechanical buckling: Mechanics, metrology, and stretchable electronics. Adv Funct Mater. 2009;19(10):1526-1536. https://doi.org/10.1002/adfm.200801065
[75] Rencheck ML, Rodriguez R, Miller NA, Davis CS. A buckling mechanics approach to elastic modulus determination of glassy polymer films. J Polym Sci B Polym Phys. 2019;57(1):15-20. https://doi.org/10.1002/polb.24755
[76] Lee J, Park J, Yoo D, et al. High uniaxial buckling strain for measuring the mechanical properties of nanoporous gold films. Scr Mater. 2021;197. https://doi.org/10.1016/j.scriptamat.2021.113816
[77] Stimpson TC, Osorio DA, Cranston ED, Moran-Mirabal JM. Direct comparison of three buckling-based methods to measure the elastic modulus of nanobiocomposite thin films. ACS Appl Mater Interfaces. 2021;13(24):29187-29198. https://doi.org/10.1021/acsami.1c08056
[78] Niinivaara E, Desmaisons J, Dufresne A, Bras J, Cranston ED. Film thickness limits of a buckling-based method to determine mechanical properties of polymer coatings. J Colloid Interface Sci. 2021;582:227-235. https://doi.org/10.1016/j.jcis.2020.08.025
[79] Rencheck ML, Weiss AJ, El Awad Azrak SM, et al. Nanocellulose film modulus determination via buckling mechanics approaches. ACS Appl Polym Mater. 2020;2(2):578-584. https://doi.org/10.1021/acsapm.9b00969
[80] Vannozzi L, Gouveia P, Pingue P, Canale C, Ricotti L. Novel ultrathin films based on a blend of PEG- b-PCL and PLLA and doped with ZnO nanoparticles. ACS Appl Mater Interfaces. 2020;12(19):21398-21410. https://doi.org/10.1021/acsami.0c00154
[81] Ebadi-Jamkhaneh M, Kontoni D P N, Ahmadi M. Evaluation of the Behavior of Gusset Plates in Concentrically Braced Steel Frames Under Cyclic Loading//Recent Trends in Civil Engineering: Select Proceedings of ICRACE 2021. Singapore: Springer Nature Singapore, 2022: 371-387.
[82] Murthy D N P, Xie M, Jiang R. Weibull models. John Wiley & Sons, 2004.
[83] Borrero-Lopez O, Hoffman M. Measurement of fracture strength in brittle thin films. Surf Coat Technol. 2014;254:1-10. https://doi.org/10.1016/j.surfcoat.2014.05.053
[84] Li P, Cao K, Jiang C, et al. In situ tensile fracturing of multilayer graphene nanosheets for their in-plane mechanical properties. Nanotechnology. 2019;30(47). https://doi.org/10.1088/1361-6528/ab3cd3
[85] Jen MHR, Wu YH, Liou TY. Mechanical behavior of thin films due to in-plane tensile and fatigue loadings. AIP Adv. 2019;9(5). https://doi.org/10.1063/1.5088848
[86] Min HG, Kang DJ, Park JH. Comparison of tensile and fatigue properties of copper thin film depending on process method. Appl. Sci. (Switzerland). 2020;10(1). https://doi.org/10.3390/app10010388
[87] Berlia R, Rasmussen P, Yang S, Rajagopalan J. Tensile behavior and inelastic strain recovery of Cu-Co nanolaminates. Scr Mater. 2021;197. https://doi.org/10.1016/j.scriptamat.2021.113781
[88] Javed H, Merle B, Preiß E, Hivet R, Benedetto A, Göken M. Mechanical characterization of metallic thin films by bulge and scratch testing. Surf Coat Technol. 2016;289:69-74. https://doi.org/10.1016/j.surfcoat.2016.01.051
[89] Tinoco HA, Holzer J, Pikálek T, et al. Determination of the yield stress in Al thin film by applying bulge test. In: Journal of Physics: Conference Series. Vol 1777. IOP Publishing Ltd; 2021. https://doi.org/10.1088/1742-6596/1777/1/012030
[90] Gusev EE, Tovarnov DA, Dedkova AA, Onufrienko AP, Djuzhev NA. Experimental Study mechanical stresses and Strength in multilayer PECVD SiO2. In: Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021. Institute of Electrical and Electronics Engineers Inc.; 2021:2437-2441. https://doi.org/10.1109/ElConRus51938.2021.9396248
[91] Li X, Diao D, Bhushan B. Fracture mechanisms of thin amorphous carbon films in nanoindentation. Acta Mater, 1997, 45(11): 4453-4461. https://doi.org/10.1016/S1359-6454(97)00143-2
[92] Den Toonder J, Malzbender J, De With G, Balkenende R. Fracture toughness and adhesion energy of sol-gel coatings on glass. J Mater Res. 2002;17(1):224-233. https://doi.org/10.1557/JMR.2002.0032
[93] Chen J, Bull SJ. Assessment of the toughness of thin coatings using nanoindentation under displacement control. In: Thin Solid Films. 2006;494:1-7. https://doi.org/10.1016/j.tsf.2005.08.176
[94] Malzbender J, De With G. Energy Dissipation, Fracture toughness and the indentation loaddisplacement curve of coated materials. Surf. Coat. Technol. 2000; 135 (1): 60-68. https://doi.org/10.1016/S0257-8972(00)00906-3
[95] EPTC : 2017 IEEE 19th Electronics Packaging Technology Conference : 6-9 December 2017.
[96] Chen J, Bull SJ. Indentation fracture and toughness assessment for thin optical coatings on glass. J Phys D Appl Phys. 2007;40(18):5401-5417. https://doi.org/10.1088/0022-3727/40/18/S01
[97] Cheng W, Li W, Wang J, et al. Effects of N2/Ar flow ratio on the structures and mechanical behavior of ZrOxNy/V2O3 nano-multilayered films. Mater. Sci. Eng. A. 2022;849. https://doi.org/10.1016/j.msea.2022.143419
[98] Soler R, Gleich S, Kirchlechner C, Scheu C, Schneider JM, Dehm G. Fracture toughness of Mo2BC thin films: Intrinsic toughness versus system toughening. Mater Des. 2018;154:20-27. https://doi.org/10.1016/j.matdes.2018.05.015
[99] Pradeepkumar MS, Sibin KP, Hasan MA, Dey A, Mukhopadhyay AK. Nanoindentation based fracture studies of ITO coating. Ceram Int. 2021;47(10):14717-14722. https://doi.org/10.1016/j.ceramint.2021.01.005
[100] Jiang ZT, Lei MK. Structure and fracture toughness of TiAlN thin films deposited by deep oscillation magnetron sputtering. Thin Solid Films. 2022;754. https://doi.org/10.1016/j.tsf.2022.139306
[101] Wang Z, Zhang M, Zhao J, Zhao H. Cyclic nanoindentation of ITO/Ag/ITO multilayer films: Hysteresis behavior and cyclic deformation response. Ceram Int. 2022;48(14):21054-21059. https://doi.org/10.1016/j.ceramint.2022.04.150
[102] Lee JH, Gao YF, Johanns KE, Pharr GM. Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials. Acta Mater. 2012;60(15):5448-5467. https://doi.org/10.1016/j.actamat.2012.07.011
[103] Zhang S, Sun D, Fu Y, Du H. Toughness measurement of thin films: A critical review. Surf Coat Technol. 2005;198(1-3 SPEC. ISS.):74-84. https://doi.org/10.1016/j.surfcoat.2004.10.021
[104] Preiß EI, Merle B, Xiao Y, et al. Applicability of focused Ion beam (FIB) milling with gallium, neon, and xenon to the fracture toughness characterization of gold thin films. J Mater Res. 2021;36(12):2505-2514. https://doi.org/10.1557/s43578-020-00045-w
[105] Xavier JR. Multilayered nanocomposite coatings for enhanced anticorrosive, flame retardant, and mechanical properties in automobile and aerospace industries. J Appl Polym Sci. 2023;140(24). https://doi.org/10.1002/app.53943
[106] Liao WB, Xu CH, Wang TL, Feng CS, Khan MA, Yasin G. Oxidation influences on the microstructure and mechanical properties of W–Nb–Mo–Ta–V–O refractory high-entropy alloy films. Vacuum. 2023;207. https://doi.org/10.1016/j.vacuum.2022.111586
[107] Park YB, Lee S, Tobah M, Ma T, Guo LJ. Optimized optical/electrical/mechanical properties of ultrathin metal films for flexible transparent conductor applications: review. Opt Mater Express. 2023;13(2):304. https://doi.org/10.1364/ome.473277
[108] Kwon J, Suh YD, Lee J, et al. Recent progress in silver nanowire based flexible/wearable optoelectronics. J Mater Chem C Mater. 2018;6(28):7445-7461. https://doi.org/10.1039/c8tc01024b
[109] Lee S, Guo LJ. Bioinspired toughening mechanisms in a multilayer transparent conductor structure. ACS Appl. Mater. Interfaces. 2022;14(5):7440-7449. https://doi.org/10.1021/acsami.1c21923
[110] Won, Daeyeon, et al. Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci Adv. 2022; 8(23). https://doi.org/10.1126/sciadv.abo3209
[111] Wang J, Jiang D, Zhang M, et al. Ice crystal-assisted intercalation of PANI within Ti3C2Tx MXene thin films for flexible supercapacitor electrodes with simultaneously high mechanical strength and rate performance. J Mater Chem A Mater. 2022;11(3):1419-1429. https://doi.org/10.1039/d2ta08176h
[112] Jin H, Zhang E, Espinosa HD. Recent advances and applications of machine learning in experimental solid mechanics: a review. Appl. Mech. Rev. 2023;75(6):061001. https://doi.org/10.1115/1.4062966
[113] Long X, Lu C, Shen Z, Su Y. Identification of Mechanical Properties of Thin-Film Elastoplastic Materials by Machine Learning. Acta Mech. Solida Sin. 2023;36(1):13-21. https://doi.org/10.1007/s10338-022-00340-5

Copyright © 2024 YUNFENG YAN Creative Commons License Publishing time:2024-02-26
This work is licensed under a Creative Commons Attribution 4.0 International License