Influence of the Addition of Niobium Pentoxide on the Structural Properties of Hydroxyapatite
José Adauto da Cruz ( Department of Environment – State University of Maringá, Umuarama, PR, 87506-370, Brazil. )
Rogério Ribeiro Pezarini ( Department of Environment – State University of Maringá, Umuarama, PR, 87506-370, Brazil. )
Stephen Rathinaraj Benjamin ( Behavioral Neuroscience Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará (UFC), Coronel Nunes de Melo 1127, Porangabussu, Fortaleza, Ceará, 60430-270, Brazil. )
Rogério Ribeiro Pezarini ( Federal Institute of Paraná - R. Cariris, Nº 750 - Bairro Santa Bárbara, Capanema, PR, 85760-000, Brazil. )
Paulo Maria de Oliveira Silva ( Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Federal University of Ceará (UFC), Fortaleza, CE, 60455-760, Brazil. )
Antonio Jefferson Mangueira Sales ( Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Federal University of Ceará (UFC), Fortaleza, CE, 60455-760, Brazil. )
Fernandes GraçaManuel Pedro ( i3N-Physics department – University of Aveiro, Aveiro, 3810-193, Portugal. )
https://doi.org/10.37155/2717-526X-71-47448Abstract
The study focused on investigating the properties of composites made from natural hydroxyapatite (HAp, Ca10(PO4)6(OH)2) sourced from tilapia fish bones (Oreochromis niloticus) and niobium pentoxide (PNb, Nb2O5). The effects of PNb concentration and sintering temperature were examined. Composites were created using a constant pressure of 450 MPa following the formula (100-x)HAp + (x)PNb, with x varying in increments of 10%, and then sintered at temperatures ranging from 700 to 1300 °C. X-ray diffraction (XRD) analysis showed the formation of new phases based on the PNb concentration and temperature. Rietveld refinement confirmed a strong fit with experimental data, supporting the accuracy of the model parameters. Fourier Transform Infrared Spectroscopy with Photoacoustic Detection (FTIR-PAS) revealed the disappearance of the OH- functional group at 3572 cm-¹. Raman spectroscopy results were consistent with XRD findings. Scanning Electron Microscopy (SEM) showed complex microstructures influenced by composition, sintering temperature, and phase interactions, with liquid-phase sintering contributing to microstructural changes. Energy Dispersive X-ray Spectroscopy (EDS) provided semiquantitative analysis, detecting the primary elements Ca, P, and Nb, along with smaller amounts of Mg and Na. The Vickers Hardness (VH) measurements indicated that PNb concentration significantly affects the mechanical properties of the composite. The study suggests that HAp/PNb composites, influenced by temperature and PNb concentration, hold great potential for use in orthopedic and dental biomaterials.
Keywords
Hydroxyapatite; Niobium pentoxide; Biomaterials; Rietveld; Vickers MicrohardnessFull Text
PDFReferences
[2] Dorozhkin S. Medical Application of Calcium Orthophosphate Bioceramics. BIO [Internet]. 2011 Feb 21;1(1):1–51. Available from: http://www.ccaasmag.org/bio_2011/vol1/Dorozhkin-CaPO4-bioceramics.pdf
[3] Nascimento WJ, Bonadio TGM, Freitas VF, Weinand WR, Baesso ML, Lima WM. Nanostructured Nb2O5–natural hydroxyapatite formed by the mechanical alloying method: A bulk composite. Mater Chem Phys [Internet]. 2011 Oct;130(1–2):84–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0254058411004755
[4] RMF Sousa, LE Fernandes WG. Nióbio. Química Nova na Escola. 2013;35:68–9.
[5] Mariucci VVG, da Cruz JA, Bonadio TGM, Picolloto AM, Weinand WR, Lima WM, et al. Effective Thermal Diffusivity Study of Powder Biocomposites via Photoacoustic Method. Brazilian Journal of Physics [Internet]. 2015 Oct 21;45(5):525–31. Available from: http://link.springer.com/10.1007/s13538-015-0344-9
[6] Johansson CB, Albrektsson T. A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. Clin Oral Implants Res [Internet]. 1991 Jan 23; 2 (1): 24–9. Available from: https://onlinelibrary.wiley.com/doi/10.1034/j.1600-0501.1991.020103.x
[7] Tamai M, Isama K, Nakaoka R, Tsuchiya T. Synthesis of a novel b-tricalcium phosphate/hydroxyapatite biphasic calcium phosphate containing niobium ions and evaluation of its osteogenic properties. J Artif Organs [Internet]. 2007 Mar 23;10(1):22–8. Available from: http://link.springer.com/10.1007/s10047-006-0363-y
[8] Fathi MH, Salehi M, Mortazavi V, Mousavi SB, Parsapour A. Novel hydroxyapatite/niobium surface coating for endodontic dental implant. Surf Eng [Internet]. 2006 Oct 1;22(5):353–8. Available from: http://journals.sagepub.com/doi/10.1179/174329406X126708
[9] Prado da Silva MH, Monteiro AM, Neto JAC, Morais SMO, dos Santos FFP. Nano-Sized Apatite Coatings on Niobium Substrates. Key Eng Mater [Internet]. 2003 Dec;254–256:439–42. Available from: https://www.scientific.net/KEM.254-256.439
[10] Musetti, H. C.; Neves Junior, L. F.; Santos, M. F. Paris EC. Uso de nanopartículas de hidroxiapatita pura e impregnadas com Nb2O5 para aplicações em fotocatálise. In: Embrapa Instrumentação. 2013. p. 436–8.
[11] Lima WM, Weinand WR, Biondo V, Nogueira ES, Medina AN, Baesso ML, et al. Microstructure effects on the thermal properties of vacuum sintered AISI 316L stainless steel. Rev Sci Instrum [Internet]. 2003 Jan 1;74(1):716–8. Available from: https://pubs.aip.org/rsi/article/74/1/716/1068100/Microstructure-effects-on-the-thermal-properties
[12] Lima CJ de, Silva IIC da, Barros LFH de, Graneiro JM, Silva MHP da. Resposta do tecido subcutâneo de camundongos à implantação de um novo biovidro à base de óxido de nióbio. Matéria (Rio Janeiro) [Internet]. 2011;16(1):574–82. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762011000100004&lng=pt&tlng=pt
[13] Pauline SA, Rajendran N. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications. Appl Surf Sci [Internet]. 2014 Jan;290:448–57. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169433213021909
[14] Demirkol N, Oktar FN, Kayali ES. Mechanical and Microstructural Properties of Sheep Hydroxyapatite (SHA)-Niobium Oxide Composites. Acta Phys Pol A [Internet]. 2012 Jan;121(1):274–6. Available from: http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z1p85.pdf
[15] Demirkol N, Meydanoglu O, Gökçe H, Oktar FN, Kayali ES. Comparison of Mechanical Properties of Sheep Hydroxyapatite (SHA) and Commercial Synthetic Hydroxyapatite (CSHA)-MgO Composites. Key Eng Mater [Internet]. 2011 Oct;493–494:588–93. Available from: https://www.scientific.net/KEM.493-494.588
[16] Demirkol N, Oktar FN, Kayali ES. Influence of Niobium Oxide on the Mechanical Properties of Hydroxyapatite. Key Eng Mater [Internet]. 2012 Nov 29;529–530:29–33. Available from: https://www.scientific.net/KEM.529-530.29
[17] da Cruz JA, Weinand WR, Neto AM, Palácios RS, Sales AJM, Prezas PR, et al. Low-Cost Hydroxyapatite Powders from Tilapia Fish. JOM [Internet]. 2020 Apr 22;72(4):1435–42. Available from: http://link.springer.com/10.1007/s11837-019-03998-4
[18] Wilson Ricardo Weinand and Walter Moreira Lima. Produção de Hidroxiapatita Via Calcinação de Osso de Peixe. 2017.
[19] Nico C, Monteiro T, Graça MPF. Niobium oxides and niobates physical properties: Review and prospects. Prog Mater Sci [Internet]. 2016 Jul;80:1–37. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0079642516000116
[20] da Cruz JA, Volnistem EA, Ferreira RF, Freitas DB, Sales AJM, Costa LC, et al. Structural characterization of Brazilian niobium pentoxide and treatment to obtain the single phase (H-Nb2O5). Therm Sci Eng Prog [Internet]. 2021 Oct;25:101015. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2451904921001761
[21] Vicente Chiaverini. Metalurgia do Pó Técnica e Produtos. Sao paulo: ABM - Associação Brasileira de Metais; 1982. 272 p.
[22] Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001 Jan 1;46(1–2):1–184.
[23] Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products [Internet]. [cited 2024 Sep 8]. Available from: https://www.astm.org/c0373-88r99.html
[24] de Oro Calderon R, Gierl-Mayer C, Danninger H. Fundamentals of Sintering: Liquid Phase Sintering. In: Encyclopedia of Materials: Metals and Alloys [Internet]. Elsevier; 2022. p. 481–92. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128197264001277
[25] Casa Grande HL. Curso Introdutório ao método Rietveld. Maringá; 2007.
[26] Mathai KC, Vidya S, John A, Solomon S, Thomas JK. Structural, Optical, and Compactness Characteristics of Nanocrystalline CaNb2O6 Synthesized through an Autoigniting Combustion Method. Adv Condens Matter Phys [Internet]. 2014;2014:1–6. Available from: http://www.hindawi.com/journals/acmp/2014/735878/
[27] Haris PI. Advances in Biomedical Spectroscopy, 2012.
[28] Li C, Xiang H, Qin Y, Fang L. Effects of barium substitution on the sintering behavior, dielectric properties of Ca2Nb2O7 ferroelectric ceramics. J Adv Dielectr [Internet]. 2017 Apr 3; 07 (02): 1750013. Available from: https://www.worldscientific.com/doi/abs/10.1142/S2010135X17500138
[29] Zhou J, Feng G, Li L, Huang F, Shen H, Yang H, et al. In situ Raman spectroscopy and X-ray diffraction of pressure-induced phase transition in columbite CaNb2O. J Alloys Compd [Internet]. 2013 Dec; 579: 267–71. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925838813014515
[30] Husson E, Repelin Y, Dao NQ, Brusset H. Normal coordinate analysis for CaNb2O6 of columbite structure. J Chem Phys [Internet]. 1977 Jun 1;66(11):5173–80. Available from: https://pubs.aip.org/jcp/article/66/11/5173/774726/Normal-coordinate-analysis-for-CaNb2O6-of
[31] Walters MA, Leung YC, Blumenthal NC, Konsker KA, LeGeros RZ. A Raman and infrared spectroscopic investigation of biological hydroxyapatite. J Inorg Biochem [Internet]. 1990 Jul; 39 (3): 193–200. Available from: https://linkinghub.elsevier.com/retrieve/pii/0162013490840027
[32] Berzina-Cimdina L, Borodajenko N. Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy. In: Infrared Spectroscopy - Materials Science, Engineering and Technology. 2012.
[33] Ristić M, Popović S, Musić S. Sol–gel synthesis and characterization of Nb2O5 powders. Mater Lett [Internet]. 2004 Aug; 58 (21): 2658–63. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167577X04002472
[34] Brejão AS, Morais MO, Vendrametto O. Tendências para o uso de nióbio no setor de microeletrônica. Clean Prod Towar A Sustain Transit. 2015;5:1–10.
[35] Callister Jr WD. Materials science and engineering – An introduction. [Internet]. Vol. 45, Materials and Corrosion. 1994. 632–633 p. Available from: https://onlinelibrary.wiley.com/doi/10.1002/maco.19940451110
[36] Callister Jr WD, Rethwisch DG. Materials science and engineering: an introduction. John wiley & sons; 2020.
Copyright © 2025 José Adauto da Cruz, Rogério Ribeiro Pezarini, Stephen Rathinaraj Benjamin, Rogério Ribeiro Pezarini, Paulo Maria de Oliveira Silva, Antonio Jefferson Mangueira Sales, Fernandes GraçaManuel Pedro

This work is licensed under a Creative Commons Attribution 4.0 International License