Cauchy Pressure and Valence Electron Concentration Dominated Hardness of Multi-principal Element Carbides Ceramics

Zhigang Ding ( Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China )

Weian Zhu ( Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China )

Junhao Su ( Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China )

Xuexi Wang ( Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China )

Yicheng Wang ( Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China )

Gaoyuan Zhang ( Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China )

https://doi.org/10.37155/2717-526X-71-54230

Abstract

Recent studies indicate that multi-principal element carbides (MPECs) ceramics can simultaneously possess high hardness and high toughness, which have potential applications in industrial fields. Nevertheless, microstructural origins of the excellent hardness and toughness combination remain unclear. In present study, the hardness of 38 derivatives based on (Ti-Zr-Hf-V-Nb-Ta)C MPECs were researched by density functional theory calculations. We found that that the non-linear equation combination by Cauchy pressure Pc and valence electron concentration (VEC) show high prediction accuracy (R2 = 0.91) with DFT values. The multivariate regression surface of hardness reveals that high hardness is often associated with high VEC and low Cauchy pressure, which can be used to predict the hardness of MPECs.

Keywords

Multi-principal element carbides; Hardness; Elastic properties; Cauchy pressure; Density functional theory

Full Text

PDF

References

[1] Sarker P, Harrington T, Toher C, Oses C, Samiee M, Maria JP, Brenner DW, Vecchio KS, Curtarolo S. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nature Commun. 2018;9(1):4980.
[2] Harrington TJ, Gild J, Sarker P, Toher C, Rost CM, Dippo OF, McElfresh C, Kaufmann K, Marin E, Borowski L, Hopkins PE, Luo J, Curtarolo S, Brenner DW, Vecchio KS. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater. 2019;166:271-280.
[3] De Leon N, Yu XX, Yu H, Weinberger CR, Thompson GB. Bonding effects on the slip differences in the B1 monocarbides. Phys. Rev. Letter. 2015;114(16):165502.
[4] Li H, Zhang L, Zeng Q, Guan K, Li K, Ren H, Liu S, Cheng L. Structural, elastic and electronic properties of transition metal carbides TMC (TM=Ti, Zr, Hf and Ta) from first-principles calculations. Solid State Commun. 2011;151(8):602-606.
[5] Han X, Girman V, Sedlak R, Dusza J, Castle EG, Wang Y, Reece M, Zhang C. Improved creep resistance of high entropy transition metal carbides. J Eur. Ceram. Soc. 2020;40(7):2709-2715.
[6] Walbrühl M, Linder D, Ågren J, Borgenstam A. A new hardness model for materials design in cemented carbides. Int J Refract. Met. H. 2018;75:94-100.
[7] Yu H, Bahadori M, Thompson GB, Weinberger CR. Understanding dislocation slip in stoichiometric rocksalt transition metal carbides and nitrides. J Mater. Sci. 2017;52(11):6235-6248.
[8] Wang W, Cheng C, Qiao J, Han L, Li Y, Miao Y. Fabrication and mechanical properties of multi-principal cation (Mg,Ti,Cr,Zr,Al,Si) mullite ceramic. Ceram. Int. 2024;50(14):25738-25748.
[9] Wang W, Lian W, Han L, Qiao J, Liaw PK. High-strength and low-thermal-conductivity porous multi-principal cation mullite ceramic. Ceram. Int. 2025;51(5):5821-5831.
[10] Yu XX, Weinberger CR, Thompson GB. Ab initio investigations of the phase stability in group IVB and VB transition metal carbides. Comput. Mater. Sci. 2016;112:318-326.
[11] Maouche D, Louail L, Ruterana P, Maamache M. Formation and stability of di-transition-metal carbides TixZr1-xC, TixHf1-xC and HfxZr1-xC. Comput. Mater. Sci. 2008;44(2):347-350.
[12] Sarker S, Rahman MA, Khatun R. Study of structural, elastic, electronics, optical and thermodynamic properties of Hf2PbC under pressure by ab-initio method. Comput. Condens. Matter. 2021;26:e00512.
[13] Balasubramanian K, Khare SV, Gall D. Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides. Acta Mater. 2018;152:175-185.
[14] Ye B, Wen T, Huang K, Wang CZ, Chu Y. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high entropy ceramic. J Am. Ceram. Soc. 2019;102(7):4344-4352.
[15] Li Q, Huang Z, Xie M, Ye W, Zhou Q, Qiu L, Qian D, Pinto HC, Song Z, Wang H. A VCoNiN multi-principal nitride film with excellent wear performance. Surf. Coat. Technol. 2023;475(25):130130.
[16] Li S, Zhou Q, Shi Y, Ye W, Lin Y, Wang H. The deformation mechanism of graphene nanosheets embedded in high-entropy alloy upon sliding. Carbon. 2024;229:119532.
[17] Zhou Q, Xia Q, Li Q, Luo D, Huang Z, Wang C, Chen Z, Wang H. Microstructure, mechanical and tribological properties of NbMoWTaAg refractory high entropy films with nano-layered self-organization. Tribol. Int. 2024;198:109888.
[18] Jiao Z, Dong Y, Li Q, Zhou Q, Han S, Yin C, Huang Z, Wang X, Wang H, Liu W. Enhancing tribocorrosion resistance of VCoNi alloys in artificial seawater via nitrogen alloying. Corros. Sci. 2025;243:112600.
[19] Shi Y, Xia Q, Xie M, Zhou Q, Hua D, Chai L, Shi T, Eder SJ, Wang H, Wang P, Liu W. Insights into irradiation-affected structural evolution and mechanical behavior of amorphous carbon. Acta Mater. 2024;281:120424.
[20] Shi Y, Wang W, Zhou Q, Xia Q, Hua D, Huang Z, Chai L, Wang H, Wang P. A Molecular Dynamics Study on the Defect Formation and Mechanical Behavior of Molybdenum Disulfide under Irradiation. ACS Appl. Mater. Interfaces. 2024;16(22):29453-29465.
[21] Zhang Y, Jiang ZB, Sun SK, Guo WM, Chen QS, Qiu JX, Plucknett K, Lin HT. Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction. J Eur. Ceram. Soc. 2019;39(13):3920-3924.
[22] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54(16):11169-11186.
[23] Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994;50(24):17953-17979.
[24] Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Letter. 1996;77(18):3865-3868.
[25] Zunger A, Wei SH, Ferreira LG, Bernard JE. Special quasirandom structures. Phys. Rev. Letter. 1990;65(3):353-356.
[26] Van De Walle A, Tiwary P, De Jong M, Olmsted DL, Asta A, Dick A, Shin D, Wang Y, Chen LQ, Liu ZK. Efficient stochastic generation of special quasirandom structures. Calphad. 2013;42:13-18.
[27] Birch F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 1947;71(11):809-824.
[28] Murnaghan FD. Finite Deformations of an Elastic Solid. Am. J Math. 1937;59(2):235-260.
[29] Hill R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A. 1952;65(5):349-354.
[30] Zaddach AJ, Niu C, Koch CC, Irving DL. Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy. JOM. 2013;65(12):1780-1789.
[31] Tian Y, Xu B, Zhao Z. Microscopic theory of hardness and design of novel superhard crystals. Int J Refract. Met. H. 2012;33:93-106.
[32] Ding Z, Zhou J, Yang P, Sun H, Ren JC, Zhao Y, Liu W. Accelerated exploration of high-performance multi-principal element alloys: data-driven high-throughput calculations and active learning method. Mater. Res. Letter. 2023;11(8):670-677.

Copyright © 2025 Zhigang Ding, Weian Zhu, Junhao Su, Xuexi Wang, Yicheng Wang, Gaoyuan Zhang Creative Commons License Publishing time:2025-03-17
This work is licensed under a Creative Commons Attribution 4.0 International License