Carbon Supported Catalysts in Fischer-Tropsch Synthesis: Structural Properties of Carbon Supports

Thaane Hlabathe

Joshua Gorimbo ( Institute for the Development of Energy for African Sustainability (IDEAS), Collage of Science, Engineering and Technology, University of South Africa (UNISA), Private Bag X6 Florida 1710, Johannesburg, South Africa. )

Mahluli Moyo

Xinying Liu

https://doi.org/10.37155/2717-526X-0402-1

Abstract

The structural properties of some carbon-based supports can prevent the formation of hot spots and improve catalyst stability at Fischer Tropsch Synthesis (FTS) temperature. Special attention and some examples are given to iron-based catalysts and their performance in FTS. The carbon supports’ structural properties such as metal-support interaction, effect of particle size, the confinement effect, graphitization degree of graphene, and interrelationship of catalyst properties, are linked to their function in FTS for supported catalysts. The modification effects of the catalysts with functional groups, promoters and heat treatment are related to FTS performance. The potential research areas and challenges posed by carbon support structural properties’ relationship to FTS performance are identified.

Keywords

Carbon support; Fe-catalysts; Fe-catalysts modification; Fischer-Tropsch synthesis; Hot spot formation

Full Text

PDF

References

[1] Davari M, Karimi S, Tavasoli A, et al. Enhancement of activity, selectivity and stability of CNTs-supported cobalt catalyst in Fischer-Tropsch via CNTs functionalization. Applied Catalysis A: General, 2014;485:133-142. https://doi.org/10.1016/j.apcata.2014.07.023
[2] Cheng K, Ordomsky VV, Virginie M, et al. Support effects in high temperature Fischer-Tropsch synthesis on iron catalysts. Applied Catalysis A: General, 2014;488:66-77. https://doi.org/10.1016/j.apcata.2014.09.033
[3] Aluha J, Boahene P, Dalai A, et al. Synthesis and characterization of Co/C and Fe/C nanocatalysts for Fischer-Tropsch synthesis: a comparative study using a fixed-bed reactor. Industrial & Engineering Chemistry Research, 2015;54(43):10661-10674. https://doi.org/10.1021/acs.iecr.5b03003
[4] Tian Z, Wang C, Si Z, et al. Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method. Applied Catalysis A: General, 2017;541:50-59. https://doi.org/10.1016/j.apcata.2017.05.001
[5] Qin C, Hou B, Wang J, et al. Stabilizing optimal crystalline facet of cobalt catalysts for Fischer-Tropsch synthesis. ACS Applied Materials & interfaces, 2019;11(37):33886-33893. https://doi.org/10.1021/acsami.9b10174
[6] Bengoa JF, Alvarez AM, Cagnoli MV, et al. Influence of intermediate iron reduced species in Fischer-Tropsch synthesis using Fe/C catalysts. Applied Catalysis A: General, 2007;325(1):68-75. https://doi.org/10.1016/j.apcata.2007.03.012
[7] Chernyak SA, Suslova EV, Ivanov AS, et al. Co catalysts supported on oxidized CNTs: evolution of structure during preparation, reduction and catalytic test in Fischer-Tropsch synthesis. Applied Catalysis A: General, 2016;523:221-229. https://doi.org/10.1016/j.apcata.2016.06.012
[8] Maillard F, Simonov PA and Savinova ER. Carbon materials as supports for fuel cell electrocatalysts. Carbon Materials for Catalysis; 2009. p. 429-480.
[9] Chen Y, Wei J, Duyar MS, et al. Carbon-based catalysts for Fischer-Tropsch synthesis. Chemical Society Reviews, 2021;50(4):2337-2366. https://doi.org/10.1039/d0cs00905a
[10] Li M and Mu B. Effect of different dimensional carbon materials on the properties and application of phase change materials: a review. Applied Energy, 2019;242:695-715. https://doi.org/10.1016/j.apenergy.2019.03.085
[11] Coville NJ, Mhlanga SD, Nxumalo EN, et al. A review of shaped carbon nanomaterials. South African Journal of Science, 2011;107(3):1-15. https://doi.org/10.4102/sajs.v107i3/4.418
[12] Diehl F and Khodakov AY. Promotion of cobalt Fischer-Tropsch catalysts with noble metals: a review. Oil & Gas Science and Technology-Revue de l'IFP, 2009;64(1):11-24. https://doi.org/10.2516/ogst:2008040
[13] Wu B, Kuang Y, Zhang X, et al. Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications. Nano Today, 2011;6(1):75-90. https://doi.org/10.1016/j.nantod.2010.12.008
[14] Fu T and Li Z. Review of recent development in Co-based catalysts supported on carbon materials for Fischer-Tropsch synthesis. Chemical Engineering Science, 2015;135:3-20. https://doi.org/10.1016/j.ces.2015.03.007
[15] Valero-Romero MJ, Rodríguez-Cano MÁ, Palomo J, et al. Carbon-based materials as catalyst supports for Fischer-Tropsch synthesis: a review. Frontiers in Materials, 2021;7:617432. https://doi.org/10.3389/fmats.2020.617432
[16] Kennedy Oubagaranadin JU and Murthy ZVP. Activated carbon classifications, properties and applications. In: Cacioppo LM (editor). Chemistry research summaries. New York: Nova; 2012. pp. 93-94.
[17] Auer E, Freund A, Pietsch J, et al. Carbons as supports for industrial precious metal catalysts. Applied Catalysis A: General, 1998;173(2):259-271. https://doi.org/10.1016/S0926-860X(98)00184-7
[18] Liu M, Zhang R and Chen W. Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chemical Reviews, 2014;114(10):5117-5160. https://doi.org/10.1021/cr400523y
[19] Menard D, Py X and Mazet N. Activated carbon monolith of high thermal conductivity for adsorption processes improvement: Part A: Adsorption step. Chemical Engineering and Processing: Process Intensification, 2005;44(9):1029-1038. https://doi.org/10.1016/j.cep.2005.02.002
[20] Chew LM, Xia W, Düdder H, et al. On the role of the stability of functional groups in multi-walled carbon nanotubes applied as support in iron-based high-temperature Fischer-Tropsch synthesis. Catalysis Today, 2016;270:85-92. https://doi.org/10.1016/j.cattod.2015.09.023
[21] Lama SMG, Weber JL, Heil T, et al. Tandem promotion of iron catalysts by sodium-sulfur and nitrogen-doped carbon layers on carbon nanotube supports for the Fischer-Tropsch to olefins synthesis. Applied Catalysis A: General, 2018;568:213-220. https://doi.org/10.1016/j.apcata.2018.09.016
[22] Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008;8(3):902-907. https://doi.org/10.1021/nl0731872
[23] Singh SK, Singh MK, Kulkarni PP, et al. Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano, 2012;6(3):2731-2740. https://doi.org/10.1021/nn300172t
[24] Serp P and Philippot K. Nanomaterials in Catalysis. 1st ed. New York: Wiley; 2012. p. 1-54.
[25] Anwer MAS and Naguib HE. Study on the morphological, dynamic mechanical and thermal properties of PLA carbon nanofibre composites. Composites Part B: Engineering, 2016;91:631-639. https://doi.org/10.1016/j.compositesb.2016.01.039
[26] Yuan G, Li X, Dong Z, et al. Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity. Carbon, 2014;68:413-425. https://doi.org/10.1016/j.carbon.2013.11.018
[27] Xiong H, Jewell LL and Coville NJ. Shaped carbons as supports for the catalytic conversion of syngas to clean fuels. ACS Catalysis, 2015;5(4):2640-2658. https://doi.org/10.1021/acscatal.5b00090
[28] Wang LW, Tamainot-Telto Z, Thorpe R, et al. Study of thermal conductivity, permeability, and adsorption performance of consolidated composite activated carbon adsorbent for refrigeration. Renewable Energy, 2011;36(8):2062-2066. https://doi.org/10.1016/j.renene.2011.01.005
[29] Sun Z, Sun B, Qiao M, et al. A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer-Tropsch synthesis. Journal of the American Chemical Society, 2012;134(42):17653-17660. https://doi.org/10.1021/ja306913x
[30] Cruz MGA, Bastos-Neto M, Oliveira AC, et al. On the structural, textural and morphological features of Fe-based catalysts supported on polystyrene mesoporous carbon for Fischer-Tropsch synthesis. Applied Catalysis A: General, 2015;495:72-83. https://doi.org/10.1016/j.apcata.2015.02.009
[31] Kim KK, Reina A, Shi Y, et al. Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 2010;21(28):285205. https://doi.org/10.1088/0957-4484/21/28/285205
[32] Menon M, Andriotis AN and Froudakis GE. Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls. Chemical Physics Letters, 2000;320(5-6):425-434. https://doi.org/10.1016/S0009-2614(00)00224-4
[33] Gu B, He S, Peron DV, et al. Synergy of nanoconfinement and promotion in the design of efficient supported iron catalysts for direct olefin synthesis from syngas. Journal of Catalysis, 2019;376:1-16. https://doi.org/10.1016/j.jcat.2019.06.035
[34] Chen W, Fan Z, Pan X, et al. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. Journal of the American Chemical Society, 2008;130(29):9414-9419. https://doi.org/10.1021/ja8008192
[35] Bahome MC, Jewell LL, Hildebrandt D, et al. Fischer-Tropsch synthesis over iron catalysts supported on carbon nanotubes. Applied Catalysis A: General, 2005;287(1):60-67. https://doi.org/10.1016/j.apcata.2005.03.029
[36] Chen Q, Liu G, Ding S, et al. Design of ultra-active iron-based Fischer-Tropsch synthesis catalysts over spherical mesoporous carbon with developed porosity. Chemical Engineering Journal, 2018;334:714-724. https://doi.org/10.1016/j.cej.2017.10.093
[37] Casavola M, Hermannsdörfer J, de Jonge N, et al. Fabrication of Fischer-Tropsch catalysts by deposition of iron nanocrystals on carbon nanotubes. Advanced Functional Materials, 2015;25(33):5309-5319. https://doi.org/10.1002/adfm.201501882
[38] Liu R, Liu R, Ma X, et al. Efficient diesel production over the iron-based Fischer-Tropsch catalyst supported on CNTs treated by urea/NaOH. Fuel, 2018;211:827-836. https://doi.org/10.1016/j.fuel.2017.09.114
[39] Karimi S, Tavasoli A, Mortazavi Y, et al. Cobalt supported on Graphene-a promising novel Fischer-Tropsch synthesis catalyst. Applied Catalysis A: General, 2015;499:188-196. https://doi.org/10.1016/j.apcata.2015.04.024
[40] Dlamini MW, Kumi DO, Phaahlamohlaka TN, et al. Carbon spheres prepared by hydrothermal synthesis-a support for bimetallic iron cobalt Fischer-Tropsch catalysts. ChemCatChem, 2015;7(18):3000-3011. https://doi.org/10.1002/cctc.201500334
[41] Wei Y, Zhang C, Liu X, et al. Enhanced Fischer-Tropsch performances of graphene oxide-supported iron catalysts via argon pretreatment. Catalysis Science & Technology, 2018;8(4):1113-1125. https://doi.org/10.1039/c7cy02449e
[42] Yang Y, Jia L, Meng Y, et al. Fischer-Tropsch synthesis over ordered mesoporous carbon supported cobalt catalysts: the role of amount of carbon precursor in catalytic performance. Catalysis Letters, 2012;142(2):195-204. https://doi.org/10.1007/s10562-011-0747-3
[43] Zaman M, Khodadi A and Mortazavi Y. Fischer-Tropsch synthesis over cobalt dispersed on carbon nanotubes-based supports and activated carbon. Fuel Processing Technology, 2009;90(10):1214-1219. https://doi.org/10.1016/j.fuproc.2009.05.026
[44] Deshmukh AA, Mhlanga SD and Coville NJ. Carbon spheres. Materials Science and Engineering: R: Reports, 2010;70(1-2):1-28. https://doi.org/10.1016/j.mser.2010.06.017
[45] Cheng Q, Zhao N, Lyu S, et al. Tuning interaction between cobalt catalysts and nitrogen dopants in carbon nanospheres to promote Fischer-Tropsch synthesis. Applied Catalysis B: Environmental, 2019;248:73-83. https://doi.org/10.1016/j.apcatb.2019.02.024
[46] Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009;9(1):30-35. https://doi.org/10.1021/nl801827v
[47] Lee HK, Lee JH, Seo JH, et al. Extremely productive iron-carbide nanoparticles on graphene flakes for CO hydrogenation reactions under harsh conditions. Journal of Catalysis, 2019;378:289-297. https://doi.org/10.1016/j.jcat.2019.09.004
[48] Liu G, Chen Q, Oyunkhand E, et al. Nitrogen-rich mesoporous carbon supported iron catalyst with superior activity for Fischer-Tropsch synthesis. Carbon, 2018;130:304-314. https://doi.org/10.1016/j.carbon.2018.01.015
[49] Ghogia AC, Nzihou A, Serp P, et al. Cobalt catalysts on carbon-based materials for Fischer-Tropsch synthesis: a review. Applied Catalysis A: General, 2021;609:117906. https://doi.org/10.1016/j.apcata.2020.117906
[50] de Smit E and Weckhuysen BM. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chemical Society Reviews, 2008;37(12):2758-2781. https://doi.org/10.1039/b805427d
[51] Pendyala VRR, Graham UM, Jacobs G, et al. Fischer-Tropsch synthesis: deactivation as a function of potassium promoter loading for precipitated iron catalyst. Catalysis Letters, 2014;144(10):1704-1716. https://doi.org/10.1007/s10562-014-1336-z
[52] Paalanen PP and Weckhuysen BM. Carbon pathways, sodium-sulphur promotion and identification of iron carbides in iron-based Fischer-Tropsch synthesis. ChemCatChem, 2020;12(17):4202-4223. https://doi.org/10.1002/cctc.202000535
[53] Asami K, Komiyama K, Yoshida K, et al. Synthesis of lower olefins from synthesis gas over active carbon-supported iron catalyst. Catalysis Today, 2018;303:117-122. https://doi.org/10.1016/j.cattod.2017.09.010
[54] Torres Galvis HM, Bitter JH, Davidian T, et al. Iron particle size effects for direct production of lower olefins from synthesis gas. Journal of the American Chemical Society, 2012;134(39):16207-16215. https://doi.org/10.1021/ja304958u
[55] Joo SH, Jun S and Ryoo R. Synthesis of ordered mesoporous carbon molecular sieves CMK-1. Microporous and Mesoporous Materials, 2001;44:153-158. https://doi.org/10.1016/S1387-1811(01)00179-2
[56] Cheng Y, Tian J, Lin J, et al. Potassium-promoted magnesium ferrite on 3D porous graphene as highly efficient catalyst for CO hydrogenation to lower olefins. Journal of Catalysis, 2019;374:24-35. https://doi.org/10.1016/j.jcat.2019.04.024
[57] Xiong H, Motchelaho MA, Moyo M, et al. Fischer-Tropsch synthesis: iron-based catalysts supported on nitrogen-doped carbon nanotubes synthesized by post-doping. Applied Catalysis A: General, 2014;482:377-386. https://doi.org/10.1016/j.apcata.2014.06.019
[58] Abbaslou RMM, Tavassoli A, Soltan J, et al. Iron catalysts supported on carbon nanotubes for Fischer-Tropsch synthesis: effect of catalytic site position. Applied Catalysis A: General, 2009;367(1-2):47-52. https://doi.org/10.1016/j.apcata.2009.07.025
[59] Díaz JA, Akhavan H, Romero A, et al. Cobalt and iron supported on carbon nanofibers as catalysts for Fischer-Tropsch synthesis. Fuel Processing Technology, 2014;128:417-424. https://doi.org/10.1016/j.fuproc.2014.08.005
[60] van Steen E and Prinsloo FF. Comparison of preparation methods for carbon nanotubes supported iron Fischer-Tropsch catalysts. Catalysis Today, 2002;71(3-4):327-334. https://doi.org/10.1016/S0920-5861(01)00459-X
[61] Truong-Huu T, Chizari K, Janowska I, et al. Few-layer graphene supporting palladium nanoparticles with a fully accessible effective surface for liquid-phase hydrogenation reaction. Catalysis Today, 2012;189(1):77-82. https://doi.org/10.1016/j.cattod.2012.04.005
[62] Wang ZL and Kang ZC. Graphitic structure and surface chemical activity of nanosize carbon spheres. Carbon, 1997;35(3):419-426. https://doi.org/10.1016/S0008-6223(97)89613-3
[63] Paquin F, Rivnay J, Salleo A, et al. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. arXiv preprint arXiv:1310.8002, 2013. https://doi.org/10.48550/arXiv.1310.8002
[64] Yang Y, Jia L, Hou B, et al. The oxidizing pretreatment-mediated autoreduction behaviour of cobalt nanoparticles supported on ordered mesoporous carbon for Fischer-Tropsch synthesis. Catalysis Science & Technology, 2014;4(3):717-728. https://doi.org/10.1039/c3cy00729d
[65] Cruz MGA, Fernandes FAN, Oliveira AC, et al. Effect of the calcination temperatures of the Fe-based catalysts supported on polystyrene mesoporous carbon for FTS Synthesis. Catalysis Today, 2017;282:174-184. https://doi.org/10.1016/j.cattod.2016.07.023
[66] Kangvansura P, Chew LM, Saengsui W, et al. Product distribution of CO2 hydrogenation by K-and Mn-promoted Fe catalysts supported on N-functionalized carbon nanotubes. Catalysis Today, 2016;275:59-65. https://doi.org/10.1016/j.cattod.2016.02.045
[67] Tian Z, Wang C, Si Z, et al. Enhancement of light olefins selectivity over N-doped Fischer-Tropsch synthesis catalyst supported on activated carbon pretreated with KMnO4. Catalysts, 2019;9(6):505. https://doi.org/10.3390/catal9060505
[68] Li Z, Liu R, Xu Y, et al. Enhanced Fischer-Tropsch synthesis performance of iron-based catalysts supported on nitric acid treated N-doped CNTs. Applied Surface Science, 2015;347:643-650. https://doi.org/10.1016/j.apsusc.2015.04.169
[69] Abrokwah RY, Rahman MM, Deshmane VG, et al. Effect of titania support on Fischer-Tropsch synthesis using cobalt, iron, and ruthenium catalysts in silicon-microchannel microreactor. Molecular Catalysis, 2019;478:110566. https://doi.org/10.1016/j.mcat.2019.110566
[70] Numpilai T, Cheng CK, Limtrakul J, et al. Recent advances in light olefins production from catalytic hydrogenation of carbon dioxide. Process Safety and Environmental Protection, 2021;151:401-427. https://doi.org/10.1016/j.psep.2021.05.025
[71] Ma W, Kugler EL and Dadyburjor DB. Promotional effect of copper on activity and selectivity to hydrocarbons and oxygenates for Fischer-Tropsch synthesis over potassium-promoted iron catalysts supported on activated carbon. Energy & Fuels, 2011;25(5):1931-1938. https://doi.org/10.1021/ef101720c
[72] Oschatz M, Krans N, Xie J, et al. Systematic variation of the sodium/sulfur promoter content on carbon-supported iron catalysts for the Fischer-Tropsch to olefins reaction. Journal of Energy Chemistry, 2016;25(6):985-993. https://doi.org/10.1016/j.jechem.2016.10.011
[73] Ni Z, Qin H, Kang S, et al. Effect of graphitic carbon modification on the catalytic performance of Fe@SiO2-GC catalysts for forming lower olefins via Fischer-Tropsch synthesis. Journal of Colloid and Interface Science, 2018;516:16-22. https://doi.org/10.1016/j.jcis.2018.01.017
[74] Wei Y, Luo D, Zhang C, et al. Precursor controlled synthesis of graphene oxide supported iron catalysts for Fischer-Tropsch synthesis. Catalysis Science & Technology, 2018;8(11):2883-2893. https://doi.org/10.1039/c8cy00617b
[75] Xiong H, Moyo M, Motchelaho MAM, et al. Fischer-Tropsch synthesis over model iron catalysts supported on carbon spheres: the effect of iron precursor, support pretreatment, catalyst preparation method and promoters. Applied Catalysis A: General, 2010;388(1-2):168-178. https://doi.org/10.1016/j.apcata.2010.08.039
[76] Xie J, Torres Galvis HM, Koeken ACJ, et al. Size and promoter effects on stability of carbon-nanofiber-supported iron-based Fischer-Tropsch catalysts. ACS Catalysis, 2016;6(6):4017-4024. https://doi.org/10.1021/acscatal.6b00321
[77] Bezemer GL, Bitter JH, Kuipers HPCE, et al. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. Journal of the American Chemical Society, 2006;128(12):3956-3964. https://doi.org/10.1021/ja058282w
[78] Pendyala VRR, Jacobs G, Graham UM, et al. Fischer-Tropsch synthesis: influence of acid treatment and preparation method on carbon nanotube supported ruthenium catalysts. Industrial & Engineering Chemistry Research, 2017;56(22):6408-6418. https://doi.org/10.1021/acs.iecr.7b00341
[79] Teng X, Huang S, Wang J, et al. Fabrication of Fe2C embedded in hollow carbon spheres: a high-performance and stable catalyst for Fischer-Tropsch synthesis. ChemCatChem, 2018;10(17):3883-3891. https://doi.org/10.1002/cctc.201800488
[80] Yang Z, Guo S, Pan X, et al. FeN nanoparticles confined in carbon nanotubes for CO hydrogenation. Energy & Environmental Science, 2011;4(11):4500-4503. https://doi.org/10.1039/c1ee01428e
[81] Kango S, Kalia S, Celli A, et al. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-A review. Progress in Polymer Science, 2013;38(8):1232-1261. https://doi.org/10.1016/j.progpolymsci.2013.02.003
[82] Oschatz M, van Deelen TW, Weber JL, et al. Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas. Catalysis Science & Technology, 2016;6(24): 8464-8473. https://doi.org/10.1039/c6cy01251e
[83] Oschatz M, Hofmann JP, van Deelen TW, et al. Effects of the functionalization of the ordered mesoporous carbon support surface on iron catalysts for the Fischer-Tropsch synthesis of lower olefins. ChemCatChem, 2017;9(4):620-628. https://doi.org/10.1002/cctc.201601228
[84] Mousavi S, Zamaniyan A, Irani M, et al. Generalized kinetic model for iron and cobalt based Fischer-Tropsch synthesis catalysts: review and model evaluation. Applied Catalysis A: General, 2015;506:57-66. https://doi.org/10.1016/j.apcata.2015.08.020
[85] Oschatz M, Lamme WS, Xie J, et al. Ordered mesoporous materials as supports for stable iron catalysts in the Fischer-Tropsch synthesis of lower olefins. ChemCatChem, 2016;8(17):2846-2852. https://doi.org/10.1002/cctc.201600492
[86] Eslava JL, Iglesias-Juez A, Fernández-García M, et al. Effect of different promoter precursors in a model Ru-Cs/graphite system on the catalytic selectivity for Fischer-Tropsch reaction. Applied Surface Science, 2018;447:307-314. https://doi.org/10.1016/j.apsusc.2018.03.207
[87] Terrones M, Botello-Méndez AR, Campos-Delgado J, et al. Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today, 2010;5(4):351-372. https://doi.org/10.1016/j.nantod.2010.06.010
[88] Cheng Y, Lin J, Xu K, et al. Fischer-Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts. ACS Catalysis, 2016;6(1):389-399. https://doi.org/10.1021/acscatal.5b02024
[89] Tian Z, Wang C, Yue J, et al. Effect of a potassium promoter on the Fischer-Tropsch synthesis of light olefins over iron carbide catalysts encapsulated in graphene-like carbon. Catalysis Science & Technology, 2019;9(11):2728-2741. https://doi.org/10.1039/c9cy00403c
[90] Moussa SO, Panchakarla LS, Ho MQ, et al. Graphene-supported, iron-based nanoparticles for catalytic production of liquid hydrocarbons from synthesis gas: the role of the graphene support in comparison with carbon nanotubes. ACS Catalysis, 2014;4(2):535-545. https://doi.org/10.1021/cs4010198
[91] Marsh H and Reinoso FR. Activated carbon. 1st ed. Elsevier; 2006. p. 1-536.
[92] Chernavskii PA, Kazantsev RV, Pankina GV, et al. Carbon-silica composite as an effective support for iron Fischer-Tropsch synthesis catalysts. Energy Technology, 2019;7(4):1800961. https://doi.org/10.1002/ente.201800961
[93] Lee JH, Lee HK, Chun DH, et al. Phase-controlled synthesis of thermally stable nitrogen-doped carbon supported iron catalysts for highly efficient Fischer-Tropsch synthesis. Nano Research, 2019;12(10):2568-2575. https://doi.org/10.1007/s12274-019-2487-4
[94] Almkhelfe H, Li X, Thapa P, et al. Carbon nanotube-supported catalysts prepared by a modified photo-Fenton process for Fischer-Tropsch synthesis. Journal of Catalysis, 2018;361:278-289. https://doi.org/10.1016/j.jcat.2018.02.009
[95] Xiong H, Motchelaho MA, Moyo M, et al. Effect of Group I alkali metal promoters on Fe/CNT catalysts in Fischer-Tropsch synthesis. Fuel, 2015;150:687-696. https://doi.org/10.1016/j.fuel.2015.02.099
[96] Roe DP, Xu R and Roberts CB. Influence of a carbon nanotube support and supercritical fluid reaction medium on Fe-catalyzed Fischer-Tropsch synthesis. Applied Catalysis A: General, 2017;543:141-149. https://doi.org/10.1016/j.apcata.2017.06.020
[97] Wang T, Ding Y, Lü Y, et al. Influence of lanthanum on the performance of Zr-Co/activated carbon catalysts in Fischer-Tropsch synthesis. Journal of Natural Gas Chemistry, 2008;17(2):153-158. https://doi.org/10.1016/S1003-9953(08)60043-2
[98] Liu R, Xu Y, Li Z, et al. A facile and efficient modification of CNTs for improved Fischer-Tropsch performance on iron catalyst: alkali modification. ChemCatChem, 2016;8(8):1454-1458. https://doi.org/10.1002/cctc.201501219
[99] Williamson DL, Herdes C, Torrente-Murciano L, et al. N-Doped Fe@ CNT for combined RWGS/FT CO2 hydrogenation. ACS Sustainable Chemistry & Engineering, 2019;7(7):7395-7402. https://doi.org/10.1021/acssuschemeng.9b00672
[100] Xiong H, Moyo M, Motchelaho MA, et al. Fischer-Tropsch synthesis: iron catalysts supported on N-doped carbon spheres prepared by chemical vapor deposition and hydrothermal approaches. Journal of Catalysis, 2014;311:80-87. https://doi.org/10.1016/j.jcat.2013.11.007
[101] Sun J, Guo L, Ma Q, et al. Functionalized natural carbon-supported nanoparticles as excellent catalysts for hydrocarbon production. Chemistry-An Asian Journal, 2017;12(3):366-371. https://doi.org/10.1002/asia.201601546
[102] Aluha J and Abatzoglou N. Promotional effect of Mo and Ni in plasma-synthesized Co-Fe/C bimetallic nano-catalysts for Fischer-Tropsch synthesis. Journal of Industrial and Engineering Chemistry, 2017;50:199-212. https://doi.org/10.1016/j.jiec.2017.02.018
[103] Todic B, Mandic M, Nikacevic N, et al. Effects of process and design parameters on heat management in fixed bed Fischer-Tropsch synthesis reactor. Korean Journal of Chemical Engineering, 2018;35(4):875-889. https://doi.org/10.1007/s11814-017-0335-3
[104] Sie ST and Krishna R. Fundamentals and selection of advanced Fischer-Tropsch reactors. Applied Catalysis A: General, 1999;186(1-2):55-70. https://doi.org/10.1016/S0926-860X(99)00164-7
[105] Tjandra R, Liu W, Lim L, et al. Melamine based, n-doped carbon/reduced graphene oxide composite foam for Li-ion hybrid supercapacitors. Carbon, 2018;129:152-158. https://doi.org/10.1016/j.carbon.2017.12.021
[106] Gross AF and Nowak AP. Hierarchical carbon foams with independently tunable mesopore and macropore size distributions. Langmuir, 2010;26(13):11378-11383. https://doi.org/10.1021/la1007846
[107] Liu H, Li T, Huang T, et al. Effect of multi-walled carbon nanotube additive on the microstructure and properties of pitch-derived carbon foams. Journal of Materials Science, 2015;50(23):7583-7590. https://doi.org/10.1007/s10853-015-9314-4
[108] Zhang S, Liu M, Gan L, et al. Synthesis of carbon foams with a high compressive strength from arylacetylene. New Carbon Materials, 2010;25(1):9-14. https://doi.org/10.1016/S1872-5805(09)60012-3
[109] Guo D, Ding B, Hu X, et al. Synthesis of boron and nitrogen codoped porous carbon foam for high performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2018;6(9):11441-11449. https://doi.org/10.1021/acssuschemeng.8b01435
[110] Zhai L, Liu X, Li T, et al. Vacuum and ultrasonic co-assisted electroless copper plating on carbon foams. Vacuum, 2015;114:21-25. https://doi.org/10.1016/j.vacuum.2014.12.005
[111] Klett J, Hardy R, Romine E, et al. High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties. Carbon, 2000;38(7):953-973. https://doi.org/10.1016/S0008-6223(99)00190-6

Copyright © 2022 Thaane Hlabathe, Joshua Gorimbo, Mahluli Moyo, Xinying Liu Creative Commons License Publishing time:2022-09-30
This work is licensed under a Creative Commons Attribution 4.0 International License