Synthesis, Electrical and Dielectric Properties of Ca-doped SrTiO3 Ceramics

Ali Mater ( Faculté des Sciences de Bizerte, LR01ES15 Laboratoire de Physique des Matériaux: Structure et Propriétés, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia )

Massoud Kahlaoui ( Unité des services communs spectromètre de surface, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia. )

Abdewaheb Inoubli ( Unité des services communs spectromètre de surface, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia. )

Chaabane Chefi ( Faculté des Sciences de Bizerte, LR01ES15 Laboratoire de Physique des Matériaux: Structure et Propriétés, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia )

https://doi.org/10.37155/2717-526X-0301-1

Abstract

CaxSr1-xTiO3 (CxST;  x=0.2 and 0.4) powders were elaborated by conventional solid state reaction. Structural and electrical properties were influenced by the Ca2+ doping content. Structural and microstructures properties of the obtained powders were conducted by X-ray diffraction and scanning electron microscopy. The powder were pressed to eight tons into cylindrical pellets and sintered at 1300°C for 3h. The electrical and dielectric properties were measured by two-probe method using HP 4192 Analyzer. The refinement of results showed that the samples were crystallized in the tetragonal with I4/mcm space group. The highest conductivity was shown for C0.2ST sample which equal to 1.21 x 10-4 S.cm-1 at 600 °C. The electrical and dielectric parameters were plotted and discussed as a function of temperature and frequency. These Ca doped perovskite ceramics  materials can be used as possible candidate for a wide range of applications in various devices.

Keywords

Ca-doped SrTiO3; Solid state reaction; Perovskite; Conductivity; Permittivity

Full Text

PDF

References

[1]M.Q. Nguyen J. Am. Ceram.Soc.76 (3) (1993) 563.
[2]D.P. Fagg, V.V. Kharton, J. R. Frade, A. A. L. Ferreira, Stability and mixedionic electronic conductivity of (Sr,La)(Ti,Fe)O3_d perovskites, Solid StateIonics156(2003)45–57.
[3]F. Gao, H. L. Zhao, X. Li, et al., Preparation and electrical properties of yttrium doped strontium titanate with B-site deficiency, Journal of Power Sources185(2008)26–31.
[4]QunHui, J. Phys: Condens. Matter 19 (11pp) (2007) 335214.
[5]M. Kahlaoui, A. Inoubli , S. Chefi, A. Madani ,C. Chefi, Ionics 20 (2014) 1729–1735
[6]H. X. Zhang, C. H. Kam, Y. Zhou, X. Q. Han, S. Buddhudu, Q. Xiang, Y. L. Lam, Y. C. Chan, Appl. Phys. Lett. 77 (2000) 609.
[7]A. Gedanken, R. Reisfeld, L. Sominski, Z. Zhong, Y. Koltypin, G. Panczer, M. Gaft, H. Minti, Appl. Phys. Lett. 77, (2000) 945.
[8]R.J. Grant, M.D. Ingram, L.D.S. Turner, C.A. Vincent, J. Phys.Chem. 82 (1978) 2838.
[9]J.R. Macdonald, Impedance Spectroscopy, Wiley, New York, 1987.
[10]X. Li, H. Zhao, W. Shen, F. Gao, X. Huang, Y. Li, Z. Zhu, J. Power Sources 166 (2007) 47–52.
[11]A. Shukla, R.N.P.Choudhary, Physica B 406 (2011) 2492–2500.
[12]A.K. Joncher: a) Nature, 256 (1977) 673, b) J.Mater.Sci., 16 (1981) 2037.
[13]J. Kawamura, S. Rikito, M. Shinya, M. Shimoji, Solid State Ionics 25 (1987) 155.
[14]M.C.R. Sastry, K.J. Rao, Solid State Ionics 44 (1991) 187.
[15]Y. Li, J.H. Gong, Z.L. Tang, Y.S. Xie, Temperature-independent activation energy for ionic conduction of zirconia based solid electrolytes, ActaPhysico-ChimicaSinica 17 (2001) 792–796.
[16]J.A. Kilner, B.C.H. Steele, in: O.T. Sorensen (Ed.), Nonstoichiometric Oxides, Academic Press, New York, p. 233 1981.
[17]G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Composites A 34 (2003) 1187.
[18]K.P. Chandra, R.N. Gupta, Int. J. Mod. Phys. B 22 (2008) 2321.
[19]Li M, Feteira A and Sinclair D C J. Appl. Phys, 105 (2009). 114109.
[20]Wang C-C, Zhang M-N, Xu K-B and Wang G-J J. Appl. Phys.112(2012) 034109

Copyright © 2021 Ali Mater, Massoud Kahlaoui, Abdewaheb Inoubli, Chaabane Chefi Creative Commons License Publishing time:2021-06-30
This work is licensed under a Creative Commons Attribution 4.0 International License