Recent Advances in Photo-supercapacitor: A Mini Review

Muraina Abeeb Olalekan

Oluwaseun Adedokun ( Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso, P.M.B 4000, Nigeria. )

Ismaila Taiwo Bello ( Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa. )

Maroof Ayinde Kareem

Fong Kwong Yam ( School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia. )

https://doi.org/10.37155/2717-526X-0402-2

Abstract

Radiant energy (solar energy) plays a vital role due to its continuous power supply and environmentally friendly in meeting the people’s energy demand. The need for an endless supply of energy, majorly through solar energy exploitation has driven the expansion and diversification of a device for proper energy storage. This review summarizes a photo-supercapacitor’s working mechanism. The classification of a supercapacitor was discussed and the advancements of the active components that makeup a photo-supercapacitor and the improvements on photo-supercapacitor in energy storage were highlighted. For the constant generation of electricity, Dye-sensitized solar cells (DSSCs) and Supercapacitor are incorporated. The invention of hybridized dye-sensitized solar cell (DSSC)-capacitors and DSSC-supercapacitors are crucial in energy storage processes, and the advancement in technology has triggered the creation of a photo-supercapacitor for efficient harvesting of energy and proper storage mechanisms. The intent of pairing a DSSC with a supercapacitor for conversion of energy and proper energy storage arose when dye molecules absorb radiant energy and the absorbed energy is transformed to electrical energy. The use of active components of a photo-supercapacitor will determine its conversion efficiency. The performance of active components of photo-supercapacitors such as dye, electrolyte, photoanode, and the counter electrode are the main factors that contribute to efficient conversion of energy to improve the photo-supercapacitor’s storage life.

Keywords

DSSCs; Supercapacitor; Counter electrode; Photoanode; Sensitizers; Photo-supercapacitor

Full Text

PDF

References

[1] Z. Caineng, Z. Qun, Z. Guosheng, X. Bo, ScienceDirect Energy revolution : From a fossil energy era to a new energy era *, Nat. Gas Ind. B. (2016) 1–11. https://doi.org/10.1016/j.ngib.2016.02.001.
[2] N. Kannan, D. Vakeesan, Solar energy for future world : - A review, 62 (2016) 1092–1105. https://doi.org/10.1016/j.rser.2016.05.022.
[3] Y.K.S. and O.A. H A. Shittu, I. T. Bello, M. A. Kareem, M. K. Awodele, Recent developments on the photoanodes employed in dye-sensitized solar cell, IOP Conf. Ser. Mater. Sci. (2020). https://doi.org/10.1088/1757-899X/805/1/012019.
[4] J. Gong, J. Liang, K. Sumathy, Review on dye-sensitized solar cells ( DSSCs ): Fundamental concepts and novel materials, Renew. Sustain. Energy Rev. 16 (2012) 5848–5860. https://doi.org/10.1016/j.rser.2012.04.044.
[5] Q. Zhang, G. Cao, Nanostructured photoelectrodes for dye-sensitized solar cells, Nano Today. 6 (2011) 91–109. https://doi.org/10.1016/j.nantod.2010.12.007.
[6] T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production, Asia Mater. 2 (2010) 96–102. https://doi.org/10.1038/asiamat.2010.82.
[7] A. Bosio, S. Pasini, N. Romeo, The history of photovoltaics with emphasis on CdTe solar cells and modules, Coatings. 10 (2020). https://doi.org/10.3390/coatings10040344.
[8] M.A. Mingsukang, M.A. Mingsukang, Third-Generation-Sensitized Solar Solar Cells, Nanostructured Sol. Cells. (2017).
[9] K. Sharma, V. Sharma, S.S. Sharma, Dye-Sensitized Solar Cells : Fundamentals and Current Status, Nanosclae Res. Lett. 6 (2018).
[10] F.S. and J.B. Azhar Fakharuddin, Rajan Jose, Thomas Brown, Environmental Science A perspective on the production of dye-sensitized solar modules, (2014) 3952–3981. https://doi.org/10.1039/c4ee01724b.
[11] S. Zhang, J. Jin, D. Li, Z. Fu, S. Gao, S. Cheng, X. Yu, Y. Xiong, Increased power conversion efficiency of dye-sensitized solar cells with counter electrodes based on carbon materials, RSC Adv. 9 (2019) 22092–22100. https://doi.org/10.1039/c9ra03344k.
[12] F. Arkan, M. Izadyar, Recent theoretical progress in the organic/metal-organic sensitizers as the free dyes, dye/TiO2 and dye/electrolyte systems; Structural modifications and solvent effects on their performance, Renew. Sustain. Energy Rev. 94 (2018) 609–655. https://doi.org/10.1016/j.rser.2018.06.054.
[13] X. Xu, S. Li, H. Zhang, Y. Shen, M. Shaik, M. Grätzel, Y. Cheng, M. Wang, A Power Pack based on Organometallic Perovskite Solar Cell and Supercapacitor, (2015).
[14] I.T. Bello, K.O. Otun, G. Nyongombe, O. Adedokun, G.L. Kabongo, M.S. Dhlamini, Synthesis , Characterization , and Supercapacitor Performance of a Mixed-Phase Mn-Doped MoS 2 Nanoflower, Nanomaterials. (2022) 1–12.
[15] D.A.C. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications, J. Power Sources. 196 (2011) 4873–4885. https://doi.org/10.1016/j.jpowsour.2011.02.022.
[16] O.A. and S.M.D. Ismaila Taiwo Bello, Adewale Odunayo Oladipo, Recent advances on the preparation and electrochemical analysis of MoS 2 -based materials for supercapacitor applications : A mini-review, Mater. Today Commun. 25 (2020) 101664. https://doi.org/10.1016/j.mtcomm.2020.101664.
[17] Y. Yang, Y. Han, W. Jiang, Y. Zhang, Y. Xu, A.M. Ahmed, Application of the supercapacitor for energy storage in China: Role and strategy, Appl. Sci. 12 (2022). https://doi.org/10.3390/app12010354.
[18] T. Chen, L. Dai, Flexible supercapacitors based on carbon nanomaterials, J. Mater. Chem. A. (2014). https://doi.org/10.1039/c4ta00567h.
[19] I.T. Bello, S.A. Adio, Molybdenum sulfide-based supercapacitors : From synthetic , bibliometric , and qualitative perspectives, Int. J. Energy Res. (2021) 12665–12692. https://doi.org/10.1002/er.6690.
[20] F.H. and D. Jerker, IoT Energy Storage – A Forecast, 5 (2018) 43–51.
[21] W. and Brodd, What Are Batteries , Fuel Cells , and Supercapacitors ?, Chem. Rev. 104 (2004) 4245−4269. https://doi.org/10.1021/cr020730k.
[22] C.H. Ng, H.N. Lim, S. Hayase, I. Harrison, A. Pandikumar, N.M. Huang, Potential active materials for photo-supercapacitor : A review, 296 (2015) 169–185. https://doi.org/10.1016/j.jpowsour.2015.07.006.
[23] D. Devadiga, M. Selvakumar, P. Shetty, M.S. Santosh, Recent progress in dye sensitized solar cell materials and photo-supercapacitors : A review, J. Power Sources. 493 (2021) 229698. https://doi.org/10.1016/j.jpowsour.2021.229698.
[24] J.M.G. and L.K. B.A. Muthuraaman , V. Elumalai, N. Vlachopoulos, M. Safdari, J. Gao, Quasi-liquid polymer-based cobalt redox mediator electrolyte for dye- sensitized solar cells, Phys. Chem. Chem. Phys. (2013) 17419–17425. https://doi.org/10.1039/C3CP52869C.
[25] U. N. A. Karim, H.F.Z. Mehmood, A.Tahira, Nanostructured photoanode and counter electrode materials for e ffi cient, 185 (2019) 165–188. https://doi.org/10.1016/j.solener.2019.04.057.
[26] P. Calandra, G. Calogero, A. Sinopoli, P.G. Gucciardi, Metal Nanoparticles and Carbon-Based Nanostructures as Advanced Materials for Cathode Application in Dye-Sensitized Solar Cells, Int. J. Photoenergy. 2010 (2010). https://doi.org/10.1155/2010/109495.
[27] M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanostructured carbon – metal oxide composite electrodes for supercapacitors : a review, (2013) 72–88. https://doi.org/10.1039/c2nr32040a.
[28] J. Liang, G. Zhu, Z. Lu, P. Zhao, C. Wang, Y. Ma, Z. Xu, Y. Wang, Y. Hu, L. Ma, T. Chen, Z. Tie, J. Liu, Z. Jin, Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate, J. Mater. Chem. A. 6 (2018) 2047–2052. https://doi.org/10.1039/c7ta09099d.
[29] D. Solís-Cortés, E. Navarrete-Astorga, R. Schrebler, J.J. Peinado-Pérez, F. Martín, J.R. Ramos-Barrado, E.A. Dalchiele, A solid-state integrated photo-supercapacitor based on ZnO nanorod arrays decorated with Ag2S quantum dots as the photoanode and a PEDOT charge storage counter-electrode, RSC Adv. 10 (2020) 5712–5721. https://doi.org/10.1039/c9ra10635a.
[30] J.Y. and W.H. K. Fan, Improving Photoanodes to Obtain Highly Efficient Dye-sensitized Solar Cells: A Brief Review, Mater. Horizons. (2017). https://doi.org/10.1039/C6MH00511J.
[31] M. and K.-Y.C. Yeoh, Recent advances in photo-anode for dye-sensitized solar cells : a review, Int. J. Energy Res. (2017). https://doi.org/10.1002/er.3764.
[32] H.K. Jun, M.A. Careem, A.K. Arof, Plasmonic effects of quantum size gold nanoparticles on dye-sensitized solar cell, (2016) 73–79. https://doi.org/10.1016/j.matpr.2016.01.010.
[33] Y.A. Dakka, N.A.M. Barakat, Demonstrated photons to electron activity of S-doped TiO 2 nanofibers as photoanode in the DSSC, Mater. Lett. (2018). https://doi.org/10.1016/j.matlet.2018.04.108.
[34] V. Gayathri, I.J. Peter, N. Rajamanickam, K. Ramachandran, Materials Today : Proceedings Improved performance of dye-sensitized solar cells by Cr doped TiO 2 nanoparticles, Mater. Today Proc. (2019) 2–5. https://doi.org/10.1016/j.matpr.2019.05.381.
[35] D. Nguyen, Y. Kurokawa, Enhancing DSSC Photoanode Performance by Using Ni-Doped TiO 2 to Fabricate Scattering Layers, (2020). https://doi.org/10.1007/s11664-020-07965-7.
[36] B. Ünlü, M. Özacar, E ff ect of Cu and Mn amounts doped to TiO 2 on the performance of DSSCs, 196 (2020) 448–456. https://doi.org/10.1016/j.solener.2019.12.043.
[37] B.O. Owino, F.W. Nyongesa, A.A. Ogacho, B.O. Aduda, B. V Odari, Effects of TiO 2 Blocking Layer on Photovoltaic Characteristics of TiO 2 / Nb 2 O 5 Dye Sensitized Solar Cells, MRS Adv. (2020). https://doi.org/10.1557/adv.20.
[38] M.L. Mingyue Li, Na Yuan, Yiwen Tang, Ling Pei, Yongdan Zhu, Jiaxian Liu, Lihua Bai, Performance optimization of dye-sensitized solar cells by gradient-ascent architecture of SiO2@Au@TiO2 microspheres embedded with Au nanoparticles, J. Mater. Sci. & Technol. (2018). https://doi.org/10.1016/j.jmst.2018.09.030.
[39] M.M. and N. Memarian, Designed structure of bilayer ­ TiO 2 – Nb 2 O 5 photoanode for increasing the performance of dye ‑ sensitized solar cells, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-02762-3.
[40] A. Gopalraman, S. Karuppuchamy, S. Vijayaraghavan, High e ffi ciency dye-sensitized solar cells with V OC – J SC trade o ff eradication by interfacial engineering of the photoanode | electrolyte interface †, (2019) 40292–40300. https://doi.org/10.1039/c9ra08278f.
[41] O. Adedokun, I. Taiwo, Y. Kolawole, Effect of precipitating agents on the performance of ZnO nanoparticles based photo-anodes in dye-sensitized solar cells, Surfaces and Interfaces. 21 (2020) 100656. https://doi.org/10.1016/j.surfin.2020.100656.
[42] J. Ji, H. Zhou, H.K. Kim, Rational design criteria for D – p – A structured organic and porphyrin sensitizers for highly e ffi cient dye-sensitized solar cells, (2018) 14518–14545. https://doi.org/10.1039/c8ta02281j.
[43] X.Y. and M.Y. Liyuan Han, Ashraful Islam, Han Chen, Chandrasekharam Malapaka, Barreddi Chiranjeevi, Shufang Zhang, High-efficiency dye-sensitized solar cell with a novel co-adsorbent, Energy Environ. Sci. (2012) 6057–6060. https://doi.org/10.1039/c2ee03418b.
[44] S.H. Kang, M.J. Jeong, Y.K. Eom, I.T. Choi, S.M. Kwon, Y. Yoo, J. Kim, J. Kwon, J.H. Park, H.K. Kim, Porphyrin Sensitizers with Donor Structural Engineering for Superior Performance Dye-Sensitized Solar Cells and Tandem Solar Cells for Water Splitting Applications, (2017) 1–10. https://doi.org/10.1002/aenm.201602117.
[45] J.K. and H.K.K. Yu Kyung Eom, Sung Ho Kang, In Taek Choi, YoungJun Yoo, Significant Light Absorption Enhancement by Single Heterocyclic Unit Change in π-Bridge Moiety from Thieno[3,2-b]benzothiophene to Thieno[3,2-b]indole for High Performance Dye-Sensitized and Tandem Solar Cells, A J. OfMaterials Chem. (2016). https://doi.org/10.1039/C6TA09836C.
[46] D. Devadiga, M. Selvakumar, P. Shetty, M. Sridhar Santosh, R.S. Chandrabose, S. Karazhanov, Recent developments in metal-free organic sensitizers derived from carbazole, triphenylamine, and phenothiazine for dye-sensitized solar cells, Int. J. Energy Res. 45 (2021) 6584–6643. https://doi.org/10.1002/er.6348.
[47] J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends, Renew. Sustain. Energy Rev. 68 (2017) 234–246. https://doi.org/10.1016/j.rser.2016.09.097.
[48] S.C. Lau, H.N. Lim, T.B.S.A. Ravoof, M.H. Yaacob, D.M. Grant, R.C.I. Mackenzie, I. Harrison, N.M. Huang, A three-electrode integrated photo-supercapacitor utilizing graphene-based intermediate bifunctional electrode, Electrochim. Acta. (2017). https://doi.org/10.1016/j.electacta.2017.04.003.
[49] M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Recent advances in dye-sensitized solar cells : from photoanodes , sensitizers and electrolytes to counter electrodes, Biochem. Pharmacol. 00 (2014) 1–8. https://doi.org/10.1016/j.mattod.2014.09.001.
[50] F. Lu, S. Qi, J. Zhang, G. Yang, B. Zhang, Y. Feng, Dyes and Pigments New benzoselenadiazole-based D e A e p e A type triarylamine sensitizers for highly ef fi cient dye-sensitized solar cells, Dye. Pigment. 141 (2017) 161–168. https://doi.org/10.1016/j.dyepig.2017.02.013.
[51] S.H. Kang, S.Y. Jung, Y.W. Kim, Y.K. Eom, H.K. Kim, Dyes and Pigments Exploratory synthesis and photovoltaic performance comparison of D – π – A structured Zn-porphyrins for dye-sensitized solar cells, Dye. Pigment. 149 (2018) 341–347. https://doi.org/10.1016/j.dyepig.2017.10.011.
[52] S. Sathyajothi, R. Jayavel, A.C. Dhanemozhi, ScienceDirect The Fabrication of Natural Dye Sensitized Solar Cell ( Dssc ) based on TiO 2 Using Henna And Beetroot Dye Extracts, Mater. Today Proc. 4 (2017) 668–676. https://doi.org/10.1016/j.matpr.2017.01.071.
[53] O. Adedokun, O.L. Adedeji, M.K. Awodele, I.T. Bello, A.O. Awodugba, Citrus fruit peels extracts as light harvesters for efficient ZnO-based dye-sensitized solar cells, J. Phys. Conf. Ser. 1299 (2019). https://doi.org/10.1088/1742-6596/1299/1/012010.
[54] D.W. and A.T.S. Zainal Arifin, Sudjito Soeparman, IMPROVING STABILITY OF CHLOROPHYLL AS NATURAL DYE FOR DYE-SENSITIZED SOLAR CELLS, J. Teknol. 1 (2018) 27–33.
[55] A.K. Liang Zhang, Development of Flexible Dye-sensitized Solar Cell Based on Pre- dyed Zinc Oxide Nanoparticle, Int. J. Electrochem. Sci. 13 (2018) 344 – 352. https://doi.org/10.0964/2018.01.07.
[56] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei, Counter electrodes in dye-sensitized solar cells, Chem. Soc. Rev. 46 (2017) 5975–6023. https://doi.org/10.1039/c6cs00752j.
[57] S.M.Z. and M.G. Mingkui Wang, Carole Grätzel, Recent Developments in Redox Electrolytes for Dye-Sensitized Solar Cells, Energy Environ. Sci. (2020).
[58] and P.W. Y. Qingjiang, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, High-Efficiency Dye-Sensitized Solar Cells : The Influence of Lithium Ions on, ACS Nano 2010. 4 (2010) 6032–6038.
[59] S.M.Z. and M.G. A. Yella, H.W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, Md. K. Nazeeruddin, Eric W.G. Diau, C.Y. Yeh, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency, Science (80-. ). 334 (2011) 629–634. https://doi.org/10.1126/science.1209688.
[60] G. Veerappan, K. Bojan, S. Rhee, Amorphous carbon as a fl exible counter electrode for low cost and ef fi cient dye sensitized solar cell, Renew. Energy. 41 (2012) 383–388. https://doi.org/10.1016/j.renene.2011.10.020.
[61] S.M. Cha, G. Nagaraju, S.C. Sekhar, L.K. Bharat, J. Su, Fallen leaves derived honeycomb-like porous carbon as a metal-free and low-cost counter electrode for dye-sensitized solar cells with excellent tri-iodide reduction, J. Colloid Interface Sci. (2017). https://doi.org/10.1016/j.jcis.2017.11.080.
[62] R. Riaz, M. Ali, T. Maiyalagan, A. Ayoub, A. Sameen, S. Lee, M. Jae, S. Hoon, ScienceDirect Activated charcoal and reduced graphene sheets composite structure for highly electro-catalytically active counter electrode material and water treatment, Int. J. Hydrogen Energy. (2019). https://doi.org/10.1016/j.ijhydene.2019.06.138.
[63] Q. Chang, Z. Ma, J. Wang, Y. Yan, W. Shi, Q. Chen, Y. Huang, Q. Yu, L. Huang, Graphene nanosheets@ZnOnanorods as three-dimensional high efficient counter electrodes for dye sensitized solar cells, Elsevier Ltd. (2015) 459–466. https://doi.org/10.1016/j.electacta.2014.11.074.
[64] A. Sarkar, A.K. Chakraborty, S. Bera, Solar Energy Materials and Solar Cells NiS / rGO nanohybrid : An excellent counter electrode for dye sensitized solar cell, Sol. Energy Mater. Sol. Cells. 182 (2018) 314–320. https://doi.org/10.1016/j.solmat.2018.03.026.
[65] Q. Tang, H. Zhang, Y. Meng, B. He, L. Yu, Angewandte Dissolution Engineering of Platinum Alloy Counter Electrodes in Dye- Sensitized Solar Cells, 266100 (2015) 11448–11452. https://doi.org/10.1002/anie.201505339.
[66] X. De Yang, D.B. Liu, Y. Hu, G. Wang, G. Dong, P. Li, B. Wu, Thermal evaporated C60 modi fi ed by Pt as counter electrode for dye- sensitized solar cells, 513 (2018) 73–77. https://doi.org/10.1016/j.chemphys.2018.07.003.
[67] S. Hussain, S.A. Patil, A. Ali, D. Vikraman, CuS / WS 2 and CuS / MoS 2 heterostructures for high performance counter electrodes in dye-sensitized solar cells, Sol. Energy. 171 (2018) 122–129. https://doi.org/10.1016/j.solener.2018.05.074.
[68] N.R. Pooja, P.S. Sowmya, B.J.A. Nagamani, P.J. Chandrasekaran, Recent Advancement in Photo ‑ Anode , Dye and Counter Cathode in Dye ‑ Sensitized Solar Cell : A Review, J. Inorg. Organomet. Polym. Mater. 31 (2021) 1894–1901. https://doi.org/10.1007/s10904-020-01854-6.
[69] C. Tsai, P. Fei, C. Chen, C. Gerbaldi, Investigation of Coral-Like Cu 2 O Nano/Microstructures as Counter Electrodes for Dye-Sensitized Solar Cells, (2015) 5715–5729. https://doi.org/10.3390/ma8095274.
[70] K. Mensah-darkwa, C. Zequine, P.K. Kahol, R.K. Gupta, Supercapacitor Energy Storage Device Using Biowastes : A Sustainable Approach to Green Energy, (2019). https://doi.org/10.3390/su11020414.
[71] D. Cai, H. Huang, D. Wang, B. Liu, L. Wang, Y. Liu, Q. Li, T. Wang, High-performance Supercapacitor Electrode Based on the Unique ZnO @ Co3O4 Core / shell Hetero-structures on Nickel Foam High-performance Supercapacitor Electrode Based on the Unique ZnO @ Co 3 O 4 Core / shell Hetero-structures on Nickel Foam, ACS Appl. Mater. Interfaces High-Performance. (2014). https://doi.org/10.1021/am5035494.
[72] L. Zhao, J.E. Soc, L. Zhao, J. Li, X. Chen, D. Cheng, J. Zhang, H. Yang, Highly Sensitive Electrochemical Detection of Hydrogen Peroxide Based on Polyethyleneimine-Au Nanoparticles-Zinc Protoporphyrin Highly Sensitive Electrochemical Detection of Hydrogen Peroxide Based on Polyethyleneimine-Au Nanoparticles-Zinc Protoporphyrin, (2019). https://doi.org/10.1149/2.0831908jes.
[73] S. Tanwar, A. Arya, A. Gaur, A.L. Sharma, Transition metal dichalcogenide ( TMDs ) electrodes for supercapacitors : a, J. Phys. Condens. Matter. 33 (2021) 303002. https://doi.org/10.1088/1361-648X/abfb3c.
[74] M. Iqbal, N.G. Saykar, A. Arya, I. Banerjee, P.S. Alegaonkar, S.K. Mahapatra, High-performance supercapacitor based on MoS2@TiO2 composite for wide range temperature application, J. Alloys Compd. 883 (2021) 160705. https://doi.org/10.1016/j.jallcom.2021.160705.
[75] N. Joseph, P.M. Sha, A.C. Bose, Recent Advances in 2D-MoS 2 and its Composite Nanostructures for Supercapacitor Electrode Application, Energy Fuels. 34 (2020) 6558–6597. https://doi.org/10.1021/acs.energyfuels.0c00430.
[76] I.T. Bello, K.O. Otun, G.L. Kabongo, M.S. Dhlamini, Non-modulated synthesis of cobalt-doped MoS 2 for improved supercapacitor performance, (2022) 1–11. https://doi.org/10.1002/er.7765.
[77] C.L. and S.F. Ruhao Liu, A photocapacitor based on organometal halide perovskite and PANI/CNT composites integrated using CNT bridge, J. Mater. Chem. A. (2017). https://doi.org/10.1039/C7TA06297D.
[78] W. Song, X. Yin, D. Liu, W. Ma, M. Zhang, X. Li, P. Cheng, A highly elastic self-charging power system for simultaneously harvesting solar and mechanical energy, Nano Energy. (2019) 103997. https://doi.org/10.1016/j.nanoen.2019.103997.
[79] A.P. Cohn, W.R. Erwin, K. Share, L. Oakes, A.S. Westover, R.E. Carter, R. Bardhan, C.L. Pint, All Silicon Electrode Photocapacitor for Integrated Energy Storage and Conversion, (2015). https://doi.org/10.1021/acs.nanolett.5b00563.
[80] J. Liang, G. Zhu, C. Wang, Y. Wang, H. Zhu, Y. Hu, H. Lv, R. Chen, L. Ma, T. Chen, Z. Jin, J. Liu, MoS 2 -Based All-Purpose Fibrous Electrode and Self- Powering Energy Fiber for Efficient Energy Harvesting and Storage, (2016). https://doi.org/10.1002/aenm.201601208.
[81] C. Chien, P. Hiralal, D. Wang, I. Huang, C. Chen, C. Chen, G.A.J. Amaratunga, Graphene-Based Integrated Photovoltaic Energy Harvesting / Storage Device, Small J. (2015) 1–9. https://doi.org/10.1002/smll.201403383.

Copyright © 2022 Oluwaseun Adedokun, Abeeb Olalekan, Ismail Taiwo Bello , Maroof Ayinde Kareem, Yam Fong Kwong Creative Commons License Publishing time:2022-09-30
This work is licensed under a Creative Commons Attribution 4.0 International License