High Temperature Compression Tests of A Commercial Isotropic Ultrafine Grain Graphite

Lisa Centofante ( a Università degli Studi di Brescia - Dipartimento di Ingegneria Meccanica e Industriale, Via Branze, 38 - 25123 Brescia, b Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro Viale dell’Università, 2 - 35020 Legnaro (Padova) )

Alberto Monett ( Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro Viale dell’Università, 2 - 35020 Legnaro (Padova) )

Giovanni Meneghetti ( Department of Industrial Engineering, University of Padova )

https://doi.org/10.37155/2717-526X-0201-5

Abstract

Graphite is often used to design components working at high temperature in a variety of industrial and research environments. It is therefore important to know the mechanical resistance of this material at high temperature. This work reports the compressive strength up to 2000°C of an isotropic ultrafine grain graphite, the POCO EDM-3, which has not been analysed in the literature yet. This graphite is used to design components able to withstand extreme environmental conditions, due to the properties resulting from the uniform and isotropic microstructure of the material. A vacuum compression test equipment was developed, able to work above 2000°C. Both cylindrical and hourglass-shaped specimens were tested and the influence of density was also evaluated. The influence of the materials in contact with the specimen ends was also analysed, but a negligible dependence was observed. The tests demonstrated that the compressive strength increases as the density and the temperature increase: at 2000°C a 22% average increase of the compressive strength over its room-temperature value was noted.

Keywords

Graphite; compressive strength; high temperature; hourglass-shaped specimen

Full Text

PDF

References

[1] Andrighetto, A.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Montano, J.; Stanescu, J.; Benetti, P.; Cristofolini, I.; Carturan, M. S.; Colombo, P.; et al. Production of High-Intensity RIB at SPES. Nucl. Phys. A, 2010, 834 (1–4), 754c-757c. https://doi.org/10.1016/j.nuclphysa.2010.01.137.
[2] Monetti, A.; Andrighetto, A.; Petrovich, C.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossetto, F.; Martinez Dominguez, F.; Vasquez, J.; Rossignoli, M.; et al. The RIB Production Target for the SPES Project. Eur. Phys. J. A, 2015, 51 (10). https://doi.org/10.1140/epja/i2015-15128-6.
[3] Scarpa, D.; Biasetto, L.; Corradetti, S.; Manzolaro, M.; Andrighetto, A.; Carturan, S.; Prete, G.; Zanonato, P.; Stracener, D. W. Neutron-Rich Isotope Production Using the Uranium Carbide Multi-Foil SPES Target Prototype. Eur. Phys. J. A, 2011, 47 (3), 1–7. https://doi.org/10.1140/epja/i2011-11032-5.
[4] Monetti, A.; Bark, R. A.; Andrighetto, A.; Beukes, P.; Conradie, J. L.; Corradetti, S.; Fourie, D.; Lussi, C.; Manzolaro, M.; Meneghetti, G.; et al. On-Line Test Using Multi-Foil SiC Target at IThemba LABS. Eur. Phys. J. A 2016 526, 2016, 52 (6), 1–10. https://doi.org/10.1140/EPJA/I2016-16168-0.
[5] Manzolaro, M.; Corradetti, S.; Andrighetto, A.; Ferrari, L. A Steady-State High-Temperature Method for Measuring Thermal Conductivity of Refractory Materials. Rev. Sci. Instrum., 2013, 84 (5). https://doi.org/10.1063/1.4804258.
[6] Corradetti, S.; Andrighetto, A.; Manzolaro, M.; Scarpa, D.; Vasquez, J.; Rossignoli, M.; Monetti, A.; Calderolla, M.; Prete, G. Research and Development on Materials for the SPES Target. EPJ Web Conf., 2014, 66, 4–7. https://doi.org/10.1051/epjconf/20146611009.
[7] Greenstreet, W. L. Mechanical Properties of Artificial Graphites - A Survey Report; Oak Ridge, Tennessee, 1968. https://doi.org/W-7U05-eng-26.
[8] Green, L. Observations on the High-Temperature Elastic and Inelastic Properties of Polycrystalline Graphites. In Proceedings of the Fourth Carbon Conference; 1959; pp 497–509.
[9] Price, R. J. Mechanical Properties of Graphite for High-Temperature Gas-Cooled Reactors: A Review. 1975.
[10] Malmstrom, C.; Keen, R.; Green, L. Some Mechanical Properties of Graphite at Elevated Temperatures. J. Appl. Phys., 1951, 22 (5), 593–600. https://doi.org/10.1063/1.1700013.
[11] Wagner, P.; Driesner, A. R. High-Temperature Mechanical Properties of Graphite. I. Creep in Compression. J. Appl. Phys., 1959, 30 (2), 148–151. https://doi.org/10.1063/1.1735123.
[12] Smith, M. C. Effects of Temperature and Strain Rate on Transverse Tensile Properties of H4Lm Graphite Tested in Helium and in Vacuum. Carbon N. Y., 1964, 1, 147–153.
[13] Martens, H. E.; Button, D. D.; Fischbach, D. B.; Jaffe, L. D. Tensile and Creep Behavior of Graphites above 3000°F. In Proceedings of the Fourth Carbon Conference; 1960; pp 511–531.
[14] Green, L. High Temperature Compression Tests on Graphite. J. Appl. Mech., 1952, 20 (2), 289–294.
[15] Gillin, L. M. Deformation Characteristics of Nuclear Grade Graphites. J. Nucl. Mater., 1967, 23 (3), 280–288. https://doi.org/10.1016/0022-3115(67)90160-2.
[16] POCO Graphite. Properties and Characteristics of Graphite; 2015. https://doi.org/10.1002/ejoc.201200111.
[17] ASTM C695-15. Standard Test Method for Compressive Strength of Carbon and Graphite. ASTM B. Stand., 2015, 1–3.
[18] Lankford, J. Compressive Strength, Hardness, and Indentation Damage in Ceramic Materials; San Antonio, Texas, USA, 1982.
[19] Dunlay, W. A.; Tracy, C. A. A Proposed Uniaxial Compression Test for High Ceramics. U.S. Army Mater. Technol. Lab. MTL-TR-89-89, 1989, 29.
[20] Cosculluela, A. Plasticite, Endommagements et Ruptures Des Alumines Sous Sollicitations Dynamiques Triaxiales: Influence de La Taille Des Grains (In French), University of Bordeaux 1, France, 1992.
[21] Forquin, P.; Denoual, C.; Cottenot, C. E.; Hild, F. Experiments and Modelling of the Compressive Behaviour of Two SiC Ceramics. Mech. Mater., 2003, 35 (10), 987–1002. https://doi.org/10.1016/S0167-6636(02)00321-6.
[22] Bezerra, U. T.; Alves, S. M. S.; Barbosa, N. P.; Torres, S. M. Hourglass-Shaped Specimen : Compressive Strength of Concrete and Mortar ( Numerical and Experimental Analyses ). Rev. IBRACON Estruturas e Mater., 2016, 9 (4), 510–524. https://doi.org/10.1590/S1983-41952016000400003.
[23] AZO Materials. Properties: Tantalum - An Overview https://www.azom.com/properties.aspx?ArticleID=1207.
[24] SSINA: Stainless Steel Information Center. High temperature properties http://www.ssina.com/composition/temperature.html.
[25] Jortner, J. Biaxial Mechanical Properties of AXF-5Q Graphite to 4000°F. In Proceedings of the Conference on Continuum Aspects of Graphite Design; 1972; pp 541–532.
[26] Broutman, J.; Krishnakumar, S. M.; Mallick, P. K. Effects of Combined Stresses on Fracture of Alumina and Graphite. J. Am. Ceram. Soc., 1970, 53 (12), 649–654. https://doi.org/10.1111/j.1151-2916.1970.tb12034.x.
[27] Ely, R. E. Sterngth of Magnesium Silicate and Graphite Under Biaxial Stresses. Ceram. Bull., 1968, 47 (5), 37–41.
[28] Babcock, S. G. Dynamic Biaxial and Elevated-Temperature Properties of ATJ-S Graphite. In Proceedings of the Conference on Continuum Aspects of Graphite Design; 1972; p 50.

Copyright © 2020 Lisa Centofante, Alberto Monett, Giovanni Meneghetti Creative Commons License Publishing time:2020-06-30
This work is licensed under a Creative Commons Attribution 4.0 International License