Oxidative Dehydrogenation of Propane over Nanostructured Mesoporous VOx/CexZr1-xO2 Catalysts
Bao Agula
Minglei Sun
Shihang Liang
Yongsheng Bao
Meilin Jia
Feng Xu
Zhong-Yong Yuan ( School of Materials Science and Engineering, Nankai University, Tianjin, China. )
https://doi.org/10.37155/2717-526X-0402-5Abstract
High-surface-area mesoporous CexZr1-xO2 materials synthesized through a surfactant-assisted approach of nanocrystalline particle assembly are utilized as a promising support for VOx-based catalysts. The catalytic properties of the resultant VOx/CexZr1-xO2 nanocatalysts are evaluated by the oxidative dehydrogenation of propane using a microreactor-GC system. It is indicated that the catalyst particles are on a nanoscale, having a mesoporous structure with uniform pore-size distribution and high surface area. The catalytic behavior of these mesoporous nanostructured VOx/CexZr1-xO2 catalysts for the oxidative dehydrogenation of propane reaction relies on the vanadia loading amount, the calcination temperature, the surface area and the Ce/Zr ratio of the supports, the particle size of active compounds, and the additional contribution to the propylene formation derives from the contribution of the catalytic dehydrogenation of propane under oxygen-lean conditions. The catalyst prepared with 8 wt% vanadia loading on Ce0.2Zr0.8O2 exhibits high and stable catalytic performance in the oxidative dehydrogenation of propane reaction.
Keywords
VOx/CexZr1-xO2 catalysts; Mesoporous materials; Nanostructure; Oxidative dehydrogenation of propane; Vanadia speciesFull Text
PDFReferences
[2] Hu P, Lang WZ, Yan X, et al. Influence of gelation and calcination temperature on the structure-performance of porous VOx-SiO2 solids in non-oxidative propane dehydrogenation. Journal of Catalysis, 2018;358:108-117. https://doi.org/10.1016/j.jcat.2017.12.004
[3] Hu ZP, Wang Z and Yuan ZY. Cr/Al2O3 catalysts with strong metal-support interactions for stable catalytic dehydrogenation of propane to propylene. Molecular Catalysis, 2020;493:111052. https://doi.org/10.1016/j.mcat.2020.111052
[4] Otroshchenko TP, Rodemerck U, Linke D, et al. Synergy effect between Zr and Cr active sites in binary CrZrOx or supported CrOx/LaZrOx: consequences for catalyst activity, selectivity and durability in non-oxidative propane dehydrogenation. Journal of Catalysis, 2017;356:197-205. https://doi.org/10.1016/j.jcat.2017.10.012
[5] Chen C, Hu Z, Zhang S, et al. Advance in the catalysts of direct dehydrogenation of propane to propylene. Acta Petrolei Sinica (Petroleum Processing Section), 2020;36(3):639-652. https://doi.org/10.3969/j.issn.1001-8719.2020.03.025
[6] De Rossi S, Ferraris G, Fremiotti S, et al. Isobutane dehydrogenation on chromia/zirconia catalysts. Applied Catalysis A: General, 1993;106(1):125-141. https://doi.org/10.1016/0926-860X(93)80160-R
[7] De Rossi S, Casaletto MP, Ferraris G, et al. Chromia/zirconia catalysts with Cr content exceeding the monolayer. A comparison with chromia/alumina and chromia/silica for isobutane dehydrogenation. Applied Catalysis A: General, 1998;167(2):257-270. https://doi.org/10.1016/S0926-860X(97)00315-3
[8] Cavani F, Ballarini N and Cericola A. Oxidative dehydrogenation of ethane and propane: how far from commercial implementation?. Catalysis Today, 2007;127(1-4):113-131. https://doi.org/10.1016/j.cattod.2007.05.009
[9] Hess C. Direct correlation of the dispersion and structure in vanadium oxide supported on silica SBA-15. Journal of Catalysis, 2007;248(1):120-123. https://doi.org/10.1016/j.jcat.2007.02.024
[10] Grzybowska B, Mekšs P, Grabowski R, et al. Effect of potassium addition to V2O5/TiO2 and MoO3/TiO2 catalysts on their physicochemical and catalytic properties in oxidative dehydrogenation of propane. Studies in Surface Science and Catalysis, 1994;82:151-158. https://doi.org/10.1016/S0167-2991(08)63407-2
[11] Grabowski R, Grzybowska B, Samson K, et al. Effect of alkaline promoters on catalytic activity of V2O5/TiO2 and MoO3/TiO2 catalysts in oxidative dehydrogenation of propane and in isopropanol decomposition. Applied Catalysis A: General, 1995;125(1):129-144. https://doi.org/10.1016/0926-860X(94)00274-6
[12] Blasco T and Nieto JML. Oxidative dyhydrogenation of short chain alkanes on supported vanadium oxide catalysts. Applied Catalysis A: General, 1997;157(1-2):117-142. https://doi.org/10.1016/S0926-860X(97)00029-X
[13] Klisińska A, Samson K, Gressel I, et al. Effect of additives on properties of V2O5/SiO2 and V2O5/MgO catalysts: I. Oxidative dehydrogenation of propane and ethane. Applied Catalysis A: General, 2006;309(1):10-16. https://doi.org/10.1016/j.apcata.2006.04.028
[14] Vedyagin AA, Mishakov IV and Ilyina EV. A step forward in the preparation of V–Mg–O catalysts for oxidative dehydrogenation of propane. Journal of Sol-Gel Science and Technology, 2021;97(1):117-125. https://doi.org/10.1007/s10971-020-05438-1
[15] Mishakov IV, Vedyagin A, Bedilo AF, et al. Aerogel VOx/MgO catalysts for oxidative dehydrogenation of propane. Catalysis Today, 2009;144(3-4):278-284. https://doi.org/10.1016/j.cattod.2009.01.018
[16] Kondratenko EV and Baerns M. Catalytic oxidative dehydrogenation of propane in the presence of O2 and N2O-the role of vanadia distribution and oxidant activation. Applied Catalysis A: General, 2001;222(1-2):133-143. https://doi.org/10.1016/S0926-860X(01)00836-5
[17] Kondratenko EV, Cherian M, Baerns M, et al. Oxidative dehydrogenation of propane over V/MCM-41 catalysts: comparison of O2 and N2O as oxidants. Journal of Catalysis, 2005;234(1):131-142. https://doi.org/10.1016/j.jcat.2005.05.025
[18] Kondratenko EV, Ovsitser O, Radnik J, et al. Influence of reaction conditions on catalyst composition and selective/non-selective reaction pathways of the ODP reaction over V2O3, VO2 and V2O5 with O2 and N2O. Applied Catalysis A: General, 2007;319:98-110. https://doi.org/10.1016/j.apcata.2006.11.021
[19] Michorczyk P and Ogonowski J. Dehydrogenation of propane to propene over gallium oxide in the presence of CO2. Applied Catalysis A: General, 2003;251(2):425-433. https://doi.org/10.1016/S0926-860X(03)00368-5
[20] Frank B, Dinse A, Ovsitser O, et al. Mass and heat transfer effects on the oxidative dehydrogenation of propane (ODP) over a low loaded VOx/Al2O3 catalyst. Applied Catalysis A: General, 2007;323:66-76. https://doi.org/10.1016/j.apcata.2007.02.006
[21] Gao X, Xin Q and Guo X. Support effects on magnesium-vanadium mixed oxides in the oxidative dehydrogenation of propane. Applied Catalysis A: General, 1994;114(2):197-205. https://doi.org/10.1016/0926-860X(94)80173-8
[22] Watling TC, Deo G, Seshan K, et al. Oxidative dehydrogenation of propane over niobia supported vanadium oxide catalysts. Catalysis Today, 1996;28(1-2):139-145. https://doi.org/10.1016/0920-5861(95)00221-9
[23] Blasco T, Galli A, Nieto JML, et al. Oxidative dehydrogenation of ethane andn-butane on VOx/Al2O3 catalysts. Journal of Catalysis, 1997;169(1):203-211. https://doi.org/10.1006/jcat.1997.1673
[24] Khodakov A, Olthof B, Bell AT, et al. Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. Journal of Catalysis, 1999;181(2):205-216. https://doi.org/10.1006/jcat.1998.2295
[25] Lemonidou AA, Nalbandian L and Vasalos IA. Oxidative dehydrogenation of propane over vanadium oxide based catalysts: effect of support and alkali promoter. Catalysis Today, 2000;61(1-4):333-341. https://doi.org/10.1016/S0920-5861(00)00393-X
[26] Chen C, Sun M, Hu Z, et al. Nature of active phase of VOx catalysts supported on SiBeta for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 2020;41(2):276-285. https://doi.org/10.1016/S1872-2067(19)63444-3
[27] Reina TR, Ivanova S, Idakiev V, et al. Nanogold mesoporous iron promoted ceria catalysts for total and preferential CO oxidation reactions. Journal of Molecular Catalysis A: Chemical, 2016;414:62-71. https://doi.org/10.1016/j.molcata.2016.01.003
[28] Wang S, Xu X, Xiao P, et al. Cooperative effect between copper species and oxygen vacancy in Ce0.7-xZrxCu0.3O2 catalysts for carbon monoxide oxidation. Frontiers of Chemical Science and Engineering, 2021;15(6):1524-1536. https://doi.org/10.1007/s11705-021-2106-2
[29] Kang M, Song MW and Lee CH. Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts. Applied Catalysis A: General, 2003;251(1):143-156. https://doi.org/10.1016/S0926-860X(03)00324-7
[30] Kim TH, Kang KH, Baek M, et al. Dehydrogenation of propane to propylene with lattice oxygen over CrOy/Al2O3-ZrO2 catalysts. Molecular Catalysis, 2017;433:1-7. https://doi.org/10.1016/j.mcat.2016.12.004
[31] Kim TH, Gim MY, Song JH, et al. Deactivation behavior of CrOy/Al2O3-ZrO2 catalysts in the dehydrogenation of propane to propylene by lattice oxygen. Catalysis Communications, 2017;97:37-41. https://doi.org/10.1016/j.catcom.2017.04.016
[32] Cao JL, Wang Y, Zhang TY, et al. Preparation, characterization and catalytic behavior of nanostructured mesoporous CuO/Ce0.8Zr0.2O2 catalysts for low-temperature CO oxidation. Applied Catalysis B: Environmental, 2008;78(1-2):120-128. https://doi.org/10.1016/j.apcatb.2007.09.007
[33] Chen YZ, Liaw BJ and Chen HC. Selective oxidation of CO in excess hydrogen over CuO/CexZr1-xO2 catalysts. International Journal of Hydrogen Energy, 2006;31(3):427-435. https://doi.org/10.1016/j.ijhydene.2005.11.004
[34] Deng QF, Ren TZ, Agula B, et al. Mesoporous CexZr1-xO2 solid solutions supported CuO nanocatalysts for toluene total oxidation. Journal of Industrial and Engineering Chemistry, 2014;20(5):3303-3312. https://doi.org/10.1016/j.jiec.2013.12.012
[35] Daniell W, Ponchel A, Kuba S, et al. Characterization and catalytic behavior of VOx-CeO2 catalysts for the oxidative dehydrogenation of propane. Topics in Catalysis, 2002;20(1):65-74. https://doi.org/10.1023/A:1016399315511
[36] Martınez-Huerta MV, Coronado JM, Fernández-Garcıa M, et al. Nature of the vanadia–ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. Journal of Catalysis, 2004;225(1):240-248. https://doi.org/10.1016/j.jcat.2004.04.005
[37] Heracleous E, Machli M, Lemonidou AA, et al. Oxidative dehydrogenation of ethane and propane over vanadia and molybdena supported catalysts. Journal of Molecular Catalysis A: Chemical, 2005;232(1-2):29-39. https://doi.org/10.1016/j.molcata.2005.01.027
[38] Postole G, Chowdhury B, Karmakar B, et al. Knoevenagel condensation reaction over acid–base bifunctional nanocrystalline CexZr1-xO2 solid solutions. Journal of Catalysis, 2010;269(1):110-121. https://doi.org/10.1016/j.jcat.2009.10.022
[39] Pijolat M, Valdivieso F, Vidal H, et al. Surface and structural characterization of CexZr1-xO2 CEZIRENCAT mixed oxides as potential three-way catalyst promoters. Journal of the Chemical Society, Faraday Transactions, 1998;94(24):3717-3726. https://doi.org/10.1039/A807680D
[40] Reddy BM, Khan A, Yamada Y, et al. Structural characterization of CeO2-MO2 (M= Si4+, Ti4+, and Zr4+) mixed oxides by Raman spectroscopy, X-ray photoelectron spectroscopy, and other techniques. The Journal of Physical Chemistry B, 2003;107(41):11475-11484. https://doi.org/10.1021/jp0358376
[41] Idakiev V, Dimitrov D, Tabakova T, et al. Catalytic abatement of CO and volatile organic compounds in waste gases by gold catalysts supported on ceria-modified mesoporous titania and zirconia. Chinese Journal of Catalysis, 2015;36(4):579-587. https://doi.org/10.1016/S1872-2067(14)60283-7
[42] Gao LJ, Chen L, Ren JT, et al. Mesoporous CdxZn1-xS with abundant surface defects for efficient photocatalytic hydrogen production. Journal of Colloid and Interface Science, 2021;589:25-33. https://doi.org/10.1016/j.jcis.2020.12.112
[43] Serrano-Ruiz JC, Luettich J, Sepúlveda-Escribano A, et al. Effect of the support composition on the vapor-phase hydrogenation of crotonaldehyde over Pt/CexZr1-xO2 catalysts. Journal of Catalysis, 2006;241(1):45-55. https://doi.org/10.1016/j.jcat.2006.04.006
[44] Pokrovski KA and Bell AT. An investigation of the factors influencing the activity of Cu/CexZr1-xO2 for methanol synthesis via CO hydrogenation. Journal of Catalysis, 2006;241(2):276-286. https://doi.org/10.1016/j.jcat.2006.05.002
[45] Machold T, Suprun WY and Papp H. Characterization of VOx-TiO2 catalysts and their activity in the partial oxidation of methyl ethyl ketone. Journal of Molecular Catalysis A: Chemical, 2008;280(1-2):122-130. https://doi.org/10.1016/j.molcata.2007.11.001
[46] Kanervo JM, Harlin ME, Krause AOI, et al. Characterisation of alumina-supported vanadium oxide catalysts by kinetic analysis of H2-TPR data. Catalysis Today, 2003;78(1-4):171-180. https://doi.org/10.1016/S0920-5861(02)00326-7
[47] Koranne MM, Goodwin JG and Marcelin G. Characterization of silica-and alumina-supported vanadia catalysts using temperature programmed reduction. Journal of Catalysis, 1994;148(1):369-377. https://doi.org/10.1006/jcat.1994.1217
[48] Varma S, Wani BN and Gupta N M. Synthesis, characterization, and redox behavior of mixed orthovanadates La1-xCexVO4. Materials Research Bulletin, 2002;37(13):2117-2127. https://doi.org/10.1016/S0025-5408(02)00888-7
[49] Gazzoli D, De Rossi S, Ferraris G, et al. Bulk and surface structures of V2O5/ZrO2 catalysts for n-butane oxidative dehydrogenation. Journal of Molecular Catalysis A: Chemical, 2009;310(1-2):17-23. https://doi.org/10.1016/j.molcata.2009.05.014
[50] Zhang H, Liu Z, Feng Z, et al. Effective silica supported Sb-V mixed oxide catalyst for selective oxidation of methanol to formaldehyde. Journal of Catalysis, 2008;260(2):295-304. https://doi.org/10.1016/j.jcat.2008.09.019
[51] Jackson SD and Rugmini S. Dehydrogenation of n-butane over vanadia catalysts supported on θ-alumina. Journal of Catalysis, 2007;251(1):59-68. https://doi.org/10.1016/j.jcat.2007.07.015
[52] Liu YM, Cao Y, Yi N, et al. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane. Journal of Catalysis, 2004;224(2):417-428. https://doi.org/10.1016/j.jcat.2004.03.010
[53] Tian H, Ross EI and Wachs IE. Quantitative determination of the speciation of surface vanadium oxides and their catalytic activity. The Journal of Physical Chemistry B, 2006;110(19):9593-9600. https://doi.org/10.1021/jp055767y
[54] Klose F, Wolff T, Lorenz H, et al. Active species on γ-alumina-supported vanadia catalysts: nature and reducibility. Journal of Catalysis, 2007;247(2):176-193. https://doi.org/10.1016/j.jcat.2007.01.013
[55] Wang G, Dai H, Zhang L, et al. CrOx/nano-Ce0.60Zr0.35Y0.05O2 catalysts that are highly selective for the oxidative dehydrogenation of isobutane to isobutene. Applied Catalysis A: General, 2010;375(2):272-278. https://doi.org/10.1016/j.apcata.2010.01.005
[56] Dinse A, Frank B, Hess C, et al. Oxidative dehydrogenation of propane over low-loaded vanadia catalysts: Impact of the support material on kinetics and selectivity. Journal of Molecular Catalysis A: Chemical, 2008;289(1-2):28-37. https://doi.org/10.1016/j.molcata.2008.04.007
[57] McGregor J, Huang Z, Shiko G, et al. The role of surface vanadia species in butane dehydrogenation over VOx/Al2O3. Catalysis Today, 2009;142(3-4):143-151. https://doi.org/10.1016/j.cattod.2008.07.022
[58] Ternero-Hidalgo JJ, Daturi M, Clet G, et al. A simultaneous operando FTIR & Raman study of propane ODH mechanism over V-Zr-O catalysts. Catalysis Today, 2022;387:197-206. https://doi.org/10.1016/j.cattod.2021.06.012
Copyright © 2023 Bao Agula, Minglei Sun, Shihang Liang, Yongsheng Bao, Meilin Jia, Feng Xu, Zhong-Yong Yuan Publishing time:2022-09-30
This work is licensed under a Creative Commons Attribution 4.0 International License