Self-discharge of Batteries: Causes, Mechanisms and Remedies

Rudolf Holze ( Chemnitz University of Technology, Institut für Chemie, Chemnitz 09107, Germany. )

https://doi.org/10.37155/2717-526X-0402-3

Abstract

Self-discharge of batteries is a natural, but nevertheless quite unwelcome phenomenon. Because it is driven in its various forms by the same thermodynamic forces as the discharge during intended operation of the device it can only be slowed down by impeding the reaction kinetics of its various steps, i.e. their respective rates of reaction. This approach should be based on a deeper understanding of the various modes and mechanisms of self-discharge, which in turn depends on the battery chemistry, its mode of operation and environmental conditions. Typical examples from representative battery chemistries are presented and observed effects are reviewed. Similarities between battery chemistries and causes of self-discharge are identified; concepts and ideas obtained this way are outlined. As an outcome of a better understanding of both common and system-independent causes and mechanisms of self-discharge as well as chemistry-specific processes approaches to reduce self-discharge are presented. Achieved progress is highlighted.

Keywords

Energy storage; Electrochemical energy conversion; Batteries; Accumulators; Flow batteries

Full Text

PDF

References

[1] Wu Y and Holze R. Self-discharge in supercapacitors: causes, effects and therapies: an overview. Electrochemical Energy Technology, 2021;7(1):1-37. https://doi.org/10.1515/ eetech-2020-0100
[2] Wu Y and Holze R. Electrochemical energy conversion and storage. 1st ed. Weinheim: Wiley-VCH;2022.
[3] Wright MR. An introduction to aqueous electrolyte solutions. Chichester:John Wiley& Sons;2007.
[4] Redox flow batteries-fundamentals and applications (Zhang H, Li X, Zhang J Eds.) CRC Press, Boca Raton 2018.
[5] de Fazio R, Cafagna D, Marcuccio G, et al. Limitations and characterization of energy storage devices for harvesting applications. Energies, 2020;13(4):783. https://doi.org/ 10.3390/en13040783
[6] Linden's handbook of batteries (Reddy TB Ed.) 4th ed. New York: MacGraw-Hill, 2011.
[7] Huggins R. Advanced batteries: Materials science aspects. New York:Springer Science & Business Media;2008.
[8] Huggins RA. Energy storage. New York:Springer;2010.
[9] Braun A. Electrochemical energy systems. Berlin:de Gruyter;2018.
[10] Energiespeicher-Bedarf, Technologien, Integration (Sterner M, Stadler I Eds.) 2nd ed. Springer Vieweg, Berlin 2017.
[11] Crompton TPJ and Crompton TR. Battery reference book. 3rd ed. Oxford: Newnes; 2000.
[12] Electrochemical dictionary (Bard AJ, Inzelt G, Scholz F Eds.) Heidelberg: Springer, 2012.
[13] Wenzl H. Self-discharge. In: Encyclopedia of electrochemical power sources Vol. 1, Garche J, Dyer CK, Moseley PT, Ogumi Z, Rand DAJ, Scrosati B (Eds.); Amsterdam: The Netherlands:Elsevier;2009. p. 407-412.
[14] Electrochemical energy storage (Eichel RA Ed.) Cham: Springer, 2019.
[15] Yang Z, Zhang J, Kintner-Meyer MCW, et al. Electrochemical energy storage for green grid. Chemical Reviews, 2011;111(5):3577-3613. https://doi.org/10.1021/cr100290v
[16] Wu Y, Holze R. Battery and/or supercapacitor electrode? On the merger of two electrochemical storage families. ChemTexts, submitted.
[17] Wu Y and Holze R. Batterie oder Superkondensator oder Beides? Die Verschmelzung zweier elektrochemischer Speicheroptionen. Bunsen-Magazin, 2022;24:100-102.
[18] Pavlov D. Essentials of lead-acid batteries. In: Hariprakash B, Prem Kumar T, Shukla AK (eds). Karaikudi: SAEST, 2006.
[19] Bullock KR and McClelland DH. The kinetics of the self-discharge reaction in a sealed lead-acid cell. Journal of the Electrochemical Society, 1976;123(3):327. https://doi.org/ 10.1149/1.2132819
[20] Murugesamoorthi KA, Srinivasan S and Appleby AJ. AC impedance studies on nickel oxide electrodes to determine self-discharge characteristics of Ni-H2 batteries. Journal of Applied Electrochemistry, 1991;21(2):95-98. https://doi.org/10.1007/BF01464287
[21] Takasaki T, Nishimura K, Saito M, et al. Cobalt-free materials for nickel-metal hydride battery: self-discharge suppression and overdischarge-resistance improvement. Electrochemistry, 2013;81(7):553-558. https://doi.org/10.5796/electrochemistry.81.553
[22] Holze R, Börnstein R, Landolt H, et al. Electrochemical thermodynamics and kinetics. Berlin and Heidelberg: Springer; 2007.
[23] Ge Y, Hoque MIU and Qu Q. 1D Hematite-[α-Fe2O3]-nanorods prepared by green fabrication for supercapacitor electrodes. Electrochemical Energy Technology, 2019;5(1):1-6. https://doi.org/10.1515/eetech-2019-0001
[24] Shukla AK, Ravikumar MK and Balasubramanian TS. Nickel/iron batteries. Journal of Power Sources, 1994;51(1-2):29-36. https://doi.org/10.1016/0378-7753(94)01953-3
[25] Vijayamohanan K, Balasubramanian TS and Shukla AK. Rechargeable alkaline iron electrodes. Journal of Power Sources, 1991;34(3):269-285. https://doi.org/10.1016/ 0378-7753(91)80093-D
[26] Rajan AS, Ravikumar MK, Priolkar KR, et al. Carbonyl-iron electrodes for rechargeable-iron batteries. Electrochemical Energy Technology, 2015;1:2-9. https://doi.org/ 10.2478/eetech-2014-0002
[27] Souza CAC, Carlos IA, Lopes M, et al. Self-discharge of Fe-Ni alkaline batteries. Journal of Power Sources, 2004;132(1-2):288-290. https://doi.org/10.1016/j.jpowsour. 2003.12.043
[28] Ruetschi P. Alkaline aqueous electrolyte cells for biomedical implantable applications. Journal of the Electrochemical Society, 1980;127(8):1667. https://doi.org/10.1149/ 1.2129978
[29] Takamura T. Primary batteries-aqueous systems| alkaline manganese-zinc. Encyclopedia of electrochemical power sources. Amsterdam: Elsevier; 2009. p. 28-42. https://doi.org/10.1016/b978-044452745-5.00098-8
[30] Pais M and Rao P. An up-to-date review on industrially significant inhibitors for corrosion control of zinc. Journal of Bio-and Tribo-Corrosion, 2021;7(3):1-13. https://doi.org/10.1007/s40735-021-00556-x
[31] Wang N, Wan H, Duan J, et al. A review of zinc-based battery from alkaline to acid. Materials Today Advances, 2021;11:100149. https://doi.org/10.1016/j.mtadv.2021.100149
[32] Jo YN, Santhoshkumar P, Prasanna K, et al. Improving self-discharge and anti-corrosion performance of Zn-air batteries using conductive polymer-coated Zn active materials. Journal of Industrial and Engineering Chemistry, 2019;76:396-402. https://doi.org/ 10.1016/j.jiec.2019.04.005
[33] Jo YN, Kang SH, Prasanna K, et al. Shield effect of polyaniline between zinc active material and aqueous electrolyte in zinc-air batteries. Applied Surface Science, 2017;422:406-412. https://doi.org/10.1016/j.apsusc.2017.06.033
[34] Lin C, Shinde SS, Li X, et al. Solid-state rechargeable zinc-air battery with long shelf life based on nanoengineered polymer electrolyte. ChemSusChem, 2018;11(18):3215-3224. https://doi.org/10.1002/cssc.201801274
[35] Liu Y, Hu J, Lu Q, et al. Highly enhanced reversibility of a Zn anode by in-situ texturing. Energy Storage Materials, 2022;47:98-104. https://doi.org/10.1016/j.ensm.2022.01.059
[36] Meng J, Tang Q, Zhou L, et al. A stirred self-stratified battery for large-scale energy storage. Joule, 2020;4(4):953-966. https://doi.org/10.1016/j.joule.2020.03.011
[37] Buckingham R, Asset T and Atanassov P. Aluminum-air batteries: a review of alloys, electrolytes and design. Journal of Power Sources, 2021;498:229762. https://doi.org/ 10.1016/j.jpowsour.2021.229762
[38] Wu B and White RE. Self-discharge model of a nickel-hydrogen cell. Journal of the Electrochemical Society, 2000;147(3):902. https://doi.org/10.1149/1.1393290
[39] Peljo P and Girault HH. Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy & Environmental Science, 2018;11(9):2306- 2309. https://doi.org/10.1039/C8EE01286E
[40] Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 2014;114(23):11503-11618. https://doi.org/10.1021/cr500003w
[41] Peled E, Golodnitsky D and Penciner J. The anode/electrolyte interface. Handbook of Battery Materials, 1998;419-456. https://doi.org/10.1002/9783527611676.ch18
[42] Holze R. Anodes-materials for negative electrodes in electrochemical energy technology. AIP Conference Proceedings. American Institute of Physics, 2014;1597(1):44-65. https://doi.org/10.1063/1.4878479
[43] Yazami R and Reynier YF. Mechanism of self-discharge in graphite-lithium anode. Electrochimica Acta, 2002;47(8):1217-1223. https://doi.org/10.1016/ S0013-4686(01)00827-1
[44] Edstroem K, Gustafsson T and Thomas JO. The cathode–electrolyte interface in the Li-ion battery. Electrochimica Acta, 2004;50(2-3):397-403. https://doi.org/10.1016/ j.electacta.2004.03.049
[45] Xu J. Critical Review on cathode-electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Letters, 2022;14(1):1-22. https://doi.org/10.1007/ s40820-022-00917-2
[46] Musella E, Mullaliu A, Ruf T, et al. Detailing the self-discharge of a cathode based on a prussian blue analogue. Energies, 2020;13(15):4027. https://doi.org/10.3390/ en13154027
[47] Utsunomiya T, Hatozaki O, Yoshimoto N, et al. Self-discharge behavior and its temperature dependence of carbon electrodes in lithium-ion batteries. Journal of Power Sources, 2011;196(20):8598-8603. https://doi.org/10.1016/j.jpowsour.2011.05.066
[48] Schlenoff JB and Chien JCW. Efficiency, stability and self discharge of electrochemically-doped polyacetylene in propylene carbonate electrolyte. Synthetic Metals, 1988;22(4):349-363. https://doi.org/10.1016/0379-6779(88)90106-3
[49] Novák P and Inganäs O. Self-discharge rate of the polypyrrole-polyethylene oxide composite electrode. Journal of the Electrochemical Society, 1988;135(10):2485. https://doi.org/10.1149/1.2095363
[50] Novák P, Inganäs O and Bjorklund R. Composite polymer positive electrodes in solid-state lithium secondary batteries. Journal of the Electrochemical Society, 1987;134(6):1341. https://doi.org/0.1149/1.2100670
[51] Goto F, Abe K, Ikabayashi K, et al. The polyaniline/lithium battery. Journal of Power Sources, 1987;20(3-4):243-248. https://doi.org/10.1016/0378-7753(87)80118-0
[52] Mistry AN and Mukherjee PP. “Shuttle” in polysulfide shuttle: friend or foe?. The Journal of Physical Chemistry C, 2018;122(42):23845-23851. https://doi.org/10.1021/ acs.jpcc.8b06077
[53] Zhang SS. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. Journal of Power Sources, 2013;231:153-162. https://doi.org/10.1016/ j.jpowsour.2012.12.102
[54] Chung SH, Chang CH and Manthiram A. Progress on the critical parameters for lithium–sulfur batteries to be practically viable. Advanced Functional Materials, 2018;28(28):1801188. https://doi.org/10.1002/adfm.201801188
[55] Yoo HD, Shterenberg I, Gofer Y, et al. Mg rechargeable batteries: an on-going challenge. Energy & Environmental Science, 2013;6(8):2265-2279. https://doi.org/ 10.1039/C3EE40871J
[56] Manthiram A and Fu Y. Advances in rechargeable lithium-sulfur batteries. Springer: Cham; 2022.
[57] Zhang X, Xie H, Kim CS, et al. Advances in lithium-sulfur batteries. Materials Science and Engineering: R: Reports, 2017;121:1-29. https://doi.org/10.1016/j.mser.2017.09.001
[58] Moy D and Narayanan SR. Mixed conduction membranes suppress the polysulfide shuttle in lithium-sulfur batteries. Journal of the Electrochemical Society, 2017;164(4):A560. https://doi.org/10.1149/2.0181704jes
[59] Chen T, Kong W, Fan M, et al. Chelation-assisted formation of multi-yolk–shell Co4N@carbon nanoboxes for self-discharge-suppressed high-performance Li-SeS2 batteries. Journal of Materials Chemistry A, 2019;7(35):20302-20309. https://doi.org/10.1039/C9TA07127J
[60] Ansari Y, Zhang S, Wen B, et al. Stabilizing Li-S battery through multilayer encapsulation of sulfur. Advanced Energy Materials, 2019;9(1):1802213. https://doi.org/10.1002/aenm.201802213
[61] Wang H, Yang Y, Liang Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Letters, 2011;11(7):2644-2647. https://doi.org/10.1021/nl200658a
[62] Wang J, Yang J, Nuli Y, et al. Room temperature Na/S batteries with sulfur composite cathode materials. Electrochemistry Communications, 2007;9(1):31-34. https://doi.org/10.1016/j.elecom.2006.08.029
[63] Hart CJ, Cuisinier M, Liang X, et al. Rational design of sulphur host materials for Li-S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chemical Communications, 2015;51(12):2308-2311. https://doi.org/10.1039/ C4CC08980D
[64] Shi K, Lai C, Liu X, et al. LiNi0.8Co0.15Al0.05O2 as both a trapper and accelerator of polysulfides for lithium-sulfur batteries. Energy Storage Materials, 2019;17:111-117. https://doi.org/10.1016/j.ensm.2018.07.024
[65] Lim WG, Kim S, Jo C, et al. A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics. Angewandte Chemie, 2019;131(52): 18920-18931. https://doi.org/10.1002/ange.201902413
[66] Li J, Niu Z, Guo C, et al. Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: a review. Journal of Energy Chemistry, 2021;54:434-451. https://doi.org/10.1016/j.jechem.2020.06.009
[67] Liu M, Li Q, Qin X, et al. Suppressing self-discharge and shuttle effect of lithium-sulfur batteries with V2O5-decorated carbon nanofiber interlayer. Small, 2017;13(12):1602539. https://doi.org/10.1002/smll.201602539
[68] Wang L, He YB, Shen L, et al. Ultra-small self-discharge and stable lithium-sulfur batteries achieved by synergetic effects of multicomponent sandwich-type composite interlayer. Nano Energy, 2018;50:367-375. https://doi.org/10.1016/j.nanoen.2018.05.043
[69] Choi C, Lee DY, Park JB, et al. Separators modified using MoO2@carbon nanotube nanocomposites as dual-mode Li-polysulfide anchoring materials for high-performance anti-self-discharge Lithium-sulfur batteries. ACS Sustainable Chemistry & Engineering, 2020;8(40):15134-15148. https://doi.org/10.1021/acssuschemeng.0c03835
[70] Suriyakumar S and Stephan AM. Mitigation of polysulfide shuttling by interlayer/permselective separators in Lithium-sulfur batteries. ACS Applied Energy Materials, 2020;3(9):8095-8129. https://doi.org/10.1021/acsaem.0c01354
[71] Deng C, Wang Z, Wang S, et al. Inhibition of polysulfide diffusion in lithium-sulfur batteries: mechanism and improvement strategies. Journal of Materials Chemistry A, 2019;7(20):12381-12413. https://doi.org/10.1039/C9TA00535H
[72] Yuan H, Huang JQ, Peng HJ, et al. A review of functional binders in lithium-sulfur batteries. Advanced Energy Materials, 2018;8(31):1802107. https://doi.org/10.1002/aenm.201802107
[73] Huang Y, Lin L, Zhang C, et al. Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Advanced Science, 2022;9(12):2106004. https://doi.org/10.1002/advs.202106004
[74] Li Y and Guo S. Material design and structure optimization for rechargeable lithium-sulfur batteries. Matter, 2021;4(4):1142-1188. https://doi.org/10.1016/j.matt.2021. 01.012
[75] Benveniste G, Rallo H, Casals LC, et al. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility. Journal of Environmental Management, 2018;226:1-12. https://doi.org/10.1016/j.jenvman.2018.08.008
[76] Wu S, Qiao Y, Deng H, et al. A single ion conducting separator and dual mediator-based electrolyte for high-performance lithium-oxygen batteries with non-carbon cathodes. Journal of Materials Chemistry A, 2018;6(21):9816-9822. https://doi.org/10.1039/ C8TA02567C
[77] Park JB, Lee SH, Jung HG, et al. Redox mediators for Li-O2 batteries: status and perspectives. Advanced Materials, 2018;30(1):1704162. https://doi.org/10.1002/adma. 201704162
[78] Aurbach D. A review on new solutions, new measurements procedures and new materials for rechargeable Li batteries. Journal of Power Sources, 2005;146(1-2):71-78. https://doi.org/10.1016/j.jpowsour.2005.03.151
[79] Chen Z, Qin Y and Amine K. Redox shuttles for safer lithium-ion batteries. Electrochimica Acta, 2009;54(24):5605-5613. https://doi.org/10.1016/j.electacta.2009.05.017
[80] Yoo DJ, Kim JS, Shin J, et al. Stable performance of aluminum-metal battery by incorporating lithium-ion chemistry. ChemElectroChem, 2017;4(9):2345-2351. https://doi.org/10.1002/celc.201700271
[81] Ge Y and Holze R. All-liquid metal accumulator. Encyclopedia, 2022;2:1859-1865. https://doi.org/10.3390/encyclopedia2040128
[82] Kim H, Boysen DA, Newhouse JM, et al. Liquid metal batteries: past, present, and future. Chemical Reviews, 2013;113(3):2075-2099. https://doi.org/10.1021/cr300205k
[83] Li H, Yin H, Wang K, et al. Liquid metal electrodes for energy storage batteries. Advanced Energy Materials, 2016;6(14):1600483. https://doi.org/10.1002/aenm.201600483
[84] Holze R. Secondary batteries-high temperature systems: sodium-sulfur. Amsterdam: Elsevier Ltd; 2009. p. 302-311.
[85] Sudworth JL and Galloway RC. Secondary batteries: high temperature systems: sodium-nickel chloride. Amsterdam: Elsevier Ltd; 2009. p. 312-323.
[86] Düerkop D, Widdecke H, Schilde C, et al. Polymer membranes for all-vanadium redox flow batteries: a review. Membranes, 2021;11(3):214. https://doi.org/10.3390/membranes11030214
[87] Sang S, Wu Q and Huang K. Preparation of zirconium phosphate (ZrP)/Nafion1135 composite membrane and H+/VO2+ transfer property investigation. Journal of Membrane Science, 2007;305(1-2):118-124. https://doi.org/10.1016/j.memsci.2007.07.041
[88] Teng X, Zhao Y, Xi J, et al. Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol-gel reactions. Journal of Membrane Science, 2009;341(1-2):149-154. https://doi.org/10.1016/j.memsci.2009.05.051
[89] Xi J, Wu Z, Qiu X, et al. Nafion/SiO2 hybrid membrane for vanadium redox flow battery. Journal of Power Sources, 2007;166(2):531-536. https://doi.org/10.1016/j.jpowsour. 2007.01.069
[90] Zhang L, Ling L, Xiao M, et al. Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nafion membrane with nacre-like nanoarchitectures. Journal of Power Sources, 2017;352:111-117. https://doi.org/ 10.1016/j.jpowsour.2017.03.124
[91] Cecchetti M, Ebaugh TA, Yu H, et al. Design and development of an innovative barrier layer to mitigate crossover in vanadium redox flow batteries. Journal of the Electrochemical Society, 2020;167(13):130535. https://doi.org/10.1149/1945-7111/abbbbb
[92] Xie J, Li G and Tan W. Preparation and characterization of SPES/PVA (double-layer) membrane for vanadium redox flow battery. High Performance Polymers, 2019;31(2):148-153. https://doi.org/10.1177/0954008317753270
[93] Leung PK, Xu Q, Zhao TS, et al. Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries. Electrochimica Acta, 2013;105:584-592. https://doi.org/10.1016/j.electacta.2013.04.155
[94] You D, Zhang H, Sun C, et al. Simulation of the self-discharge process in vanadium redox flow battery. Journal of Power Sources, 2011;196(3):1578-1585. https://doi.org/10.1016/j.jpowsour.2010.08.036
[95] Tang A, Bao J and Skyllas-Kazacos M. Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery. Journal of Power Sources, 2011;196(24):10737-10747. https://doi.org/10.1016/j.powsour.2011. 09.003
[96] Jiang Z, Klyukin K, Miller K, et al. Mechanistic theoretical investigation of self-discharge reactions in a vanadium redox flow battery. The Journal of Physical Chemistry B, 2019;123(18):3976-3983. https://doi.org/10.1021/acs.jpcb.8b10980
[97] Friedl J, Holland-Cunz MV, Cording F, et al. Asymmetric polyoxometalate electrolytes for advanced redox flow batteries. Energy & Environmental Science, 2018;11(10):3010-3018. https://doi.org/10.1039/C8EE00422F
[98] Fang B, Iwasa S, Wei Y, et al. A study of the Ce (III)/Ce (IV) redox couple for redox flow battery application. Electrochimica Acta, 2002;47(24):3971-3976. https://doi.org/10.1016/S0013-4686(02)00370-5
[99] Ngamsai K and Arpornwichanop A. Investigating the air oxidation of V (II) ions in a vanadium redox flow battery. Journal of Power Sources, 2015;295:292-298. https://doi.org/10.1016/j.jpowsour.2015.06.157
[100] Skyllas-Kazacos M, McCann J, Li Y, et al. The mechanism and modelling of shunt current in the vanadium redox flow battery. ChemistrySelect, 2016;1(10):2249-2256. https://doi.org/10.1002/slct.201600432
[101] Bryans D, Amstutz V, Girault HH, et al. Characterisation of a 200 kW/400 kWh vanadium redox flow battery. Batteries, 2018;4(4):54. https://doi.org/10.3390/ batteries4040054
[102] Pan J, Yang M, Jia X, et al. The principle and electrochemical performance of a single flow Cd-PbO2 battery. Journal of the Electrochemical Society, 2013;160(8):A1146. https://doi.org/10.1149/2.051308jes
[103] Leung PK, Xu Q and Zhao TS. High-potential zinc-lead dioxide rechargeable cells. Electrochimica Acta, 2012;79:117-125. https://doi.org/10.1016/j.electacta.2012.06.089
[104] Dai C, Hu L, Jin X, et al. The emerging of aqueous zinc-based dual electrolytic batteries. Small, 2021;17(33):2008043. https://doi.org/10.1002/smll.202008043
[105] Zhang H, Eshetu GG, Judez X, et al. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angewandte Chemie International Edition, 2018;57(46):15002-15027. https://doi.org/10.1002/anie.201712702

Copyright © 2022 Rudolf Holze Creative Commons License Publishing time:2022-09-30
This work is licensed under a Creative Commons Attribution 4.0 International License