MEMS Smart Glass for Personalized Lighting and Energy Management in Buildings

Hartmut Hillmer ( Nanoscale Glasstec GmbH, 34132 Kassel, Germany. )

Dennis Loeber ( Institute of Nanostructure Technologies and Analytics (INA) and Center for Interdiscip-linary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany. )

Md Kamrul Hasan ( Institute of Nanostructure Technologies and Analytics (INA) and Center for Interdiscip-linary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany. )

Steffen Liebermann ( Institute of Nanostructure Technologies and Analytics (INA) and Center for Interdiscip-linary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany. )

Mustaqim Siddi Que Iskhandar ( Nanoscale Glasstec GmbH, 34132 Kassel, Germany. )

Shilby Baby ( Nanoscale Glasstec GmbH, 34132 Kassel, Germany. )

Shujie Liu ( Institute of Nanostructure Technologies and Analytics (INA) and Center for Interdiscip-linary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany. )

Basma Elsaka ( Institute of Nanostructure Technologies and Analytics (INA) and Center for Interdiscip-linary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany. )

Jiahao Chen ( Institute of Nanostructure Technologies and Analytics (INA) and Center for Interdiscip-linary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany. )

Muhammad Hasnain Qasim ( Institute of Nanostructure Technologies and Analytics (INA) and Center for Interdiscip-linary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany. )

Guilin Xu ( Nanoscale Glasstec GmbH, 34132 Kassel, Germany. )

Naureen Ahmed ( Institute of Nanostructure Technologies and Analytics (INA) and Center for Interdiscip-linary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany. )

Eslam Farrag ( Institute of Nanostructure Technologies and Analytics (INA) and Center for Interdiscip-linary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany. )

https://doi.org/10.37155/2811-0730-0201-14

Abstract

A detailed quantitative overview on different MEMS smart glass technologies and smart glass technologies in general is given. Our MEMS smart glass is focused next, based on millions of miniaturized planar mirrors. Installed in windows or building facades, it allows personalized daylight steering as well as thermal and energy management in buildings via electrostatic actuation, strongly supports health and has a large potential for reducing CO2 emissions and energy consumption of buildings, noticeably. Various results of experimental characterizations and reliability studies are summarized. Simulations of light steering are reported for different use cases involving tailored variable tilt angles of the mirrors. Ray tracing is used to visualize light steering and distribution in a model room, showing that our MEMS smart glass can generate high illuminance where necessary in workspaces. Finally, simulations of energy savings, and amortization times are presented using hourly resolved real weather data over up to 10 years, varying cloud coverage, daytime and seasonal varying irradiance via varying sun orbit, respective geo coordinates of different locations, energy price and others. Simulation results are depicted for four German and two international cities, varying in latitude and elevation.  Huge energy saving potential of our MEMS smart glass and amortization of investment in MEMS smart glass within less than five years in the best case is reported compared to conventional window blind systems.

Keywords

Energy Saving; Green Technologies; Smart Window; Thermal and Energy Management; Personalized Daylight Steering

Full Text

PDF

References

[1] Intergovernmental Panel on Climate Change (IPCC), Core Writing Team, Lee H, Romero J (eds). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessement Report of the IPCC. IPCC, Geneva, 2023. DOI: 10.59327/IPCC/AR6-9789291691647.
[2] Rahman M M. Do population density, economic growth, energy use and exports adversely affect environmental quality in Asian populous countries?. Renewable and Sustainable Energy Reviews, 2017; 77:506-514. DOI: 10.1016/j.rser.2017.04.041.
[3] Alam Md M, Murad Md W, Noman A H Md, et al. Relationships among carbon emissions, economic growth, energy consumption and population growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia. Ecological Indicators, 2016; 70:466-479. DOI: 10.1016/j.ecolind.2016.06.043.
[4] Ohlan R. The impact of population density, energy consumption, economic growth and trade openness on CO2 emissions in India. Natural Hazards, 2015; 79:1409-1428. DOI: 10.1007/s11069-015-1898-0.
[5] Gupta J. A history of international climate change policy. WIREs Climate Change, 2010; 1(5):636-653. DOI: 10.1002/wcc.67.
[6] United Nations Framework Convention on Climate Change (UNFCCC). The Paris Agreement. Available from: https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf?download. [Last accessed on 10 September 2023].
[7] Jacobson M Z, Delucchi M A. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy, 2011; 39(3):1154-1169. DOI: 10.1016/J.ENPOL.2010.11.040.
[8] Ruggeri A G, Gabrielli L, Scarpa M. Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects. Sustainability, 2020; 12(18):7465. DOI: 10.3390/SU12187465.
[9] Balaras C A, Droutsa K, Dascalaki E, et al. Deterioration of European apartment buildings. Energy and Buildings, 2005; 37(5):515–527. DOI: 10.1016/J.ENBUILD.2004.09.010.
[10] Sandberg N H, Sartori I, Heidrich O, et al. Dynamic building stock modelling: Application to 11 European countries to support the energy efficiency and retrofit ambitions of the EU. Energy and Buildings, 2016; 132:26-38. DOI: 10.1016/J.ENBUILD.2016.05.100.
[11] Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit. Treibhausgasemissionen sinken 2020 um 8,7 Prozent, 2021. Available from: https://www.bmuv.de/PM9484. [Last accessed on 23 September 2023].
[12] Gramm S. Energieeffiziente Beleuchtung unter Berücksichtigung von Tageslicht und verschiedenen Nutzeranforderungen [PhD Thesis]. Berlin: Technische Universität Berlin, 2015.
[13] Birchall S, Gustafsson M, Wallis I, et al. Survey on the energy needs and architectural features of the EU building stock. Available from: http://www.diva-portal.org/smash/get/diva2:949958/FULLTEXT01.pdf. [Last accessed on 26 December 2023]
[14] Nageib A M, Elzafarany A M, Mohamed F O, et al. Effect of smart glazing window on energy consumption inside office building. Materials Science Forum, 2020; 1008:72-83. DOI: 10.4028/www.scientific.net/MSF.1008.72.
[15] Detsi M, Manolitsis A, Atsonios I, Mandilaras I, Founti M. Energy Savings in an Office Building with High WWR Using Glazing Systems Combining Thermochromic and Electrochromic Layers. Energies, 2020, 13(11):3020. DOI: 10.3390/en13113020.
[16] Hasan K, Baby S, Muringakodan S, et al. Energy Saving and Amortization Time Simulation for a Model Room with MEMS (micro electromechanical system) Smart Glazing. 77th ed. In: Sörgel T. Jahrbuch Oberflächentechnik (Yearbook Surfacetechnology). Bad Saulgau: Leuze Verlag (Leuze Publishing House); 2021. p. 163–188. ISBN 978-3-87480-369-4.
[17] Brzezicki M. A systematic review of the most recent concepts in smart windows technologies with a focus on electrochromics. Sustainability , 2021; 13:9604. DOI: 10.3390/su13179604.
[18] Akram M W, Hasannuzaman M, Cuce E, et al. Global technological advancement and challenges of glazed window, facade system and vertical greenery-based energy savings in buildings: A comprehensive review. Energy and Built Environment, 2023; 4(2):206-226. DOI: 10.1016/j.enbenv.2021.11.003.
[19] Hillmer H, Al-Qargholi B, Khan M M, et al. Optical MEMS-based micromirror arrays for active light steering in smart windows. Japanese Journal of Applied Physics, 2018; 57(8S2):08PA07. DOI: 10.7567/JJAP.57.08PA07.
[20] Hillmer H H, Iskhandar M S Q, Hasan M K, et al. MOEMS micromirror arrays in smart windows for daylight steering. Journal of Optical Microsystems, 2021; 1(1):014502. DOI: 10.1117/1.JOM.1.1.014502.
[21] Aschehoug Ø. Daylight in Buildings-A source book on daylighting systems and components. International Energy Agency Solar Heating & Cooling Programme. Available from: https://facades.lbl.gov/daylight-buildings-source-book-daylighting-systems. [Last accessed on 21 September 2023]
[22] Hillmer H, Schmid J, Stadler I. Mikrospiegelarray. Deutschland. DE 103 58 967 B4. 2003. EP 1700152 B1. 2004. US 7,677,742 B2. 2004.
[23] Iskhandar M S Q, Al-Qargholi B, Khan M M, et al. Development of optical MEMS-based micromirror arrays for smart window applications: Implementation of subfield addressing and reliability measurements. 75th ed. In: Sörgel T. Jahrbuch Oberflächentechnik (Yearbook Surfacetechnology). Bad Saulgau: Leuze Verlag (Leuze Publishing House); 2019. p. 93-107. ISBN 978-3-87480-357-1.
[24] Worapattrakul N, Tatzel A, Viereck V, et al. Planar free-standing metal layer fabrication: implementing sub-structures in micromirror arrays for light steering applications. Micro and Nano Systems Letters, 2020; 8:20. DOI: 10.1186/s40486-020-00124-x.
[25] Nazemroaya S, Iskhandar M, Hasan M K, et al. Concepts for clear View through 3D Structured Surfaces of MEMS Smart Glass: Design, Implementation, Characterization and Validation. 76th ed. In: Sörgel T. Jahrbuch Oberflächentechnik (Yearbook Surfacetechnology). Bad Saulgau: Leuze Verlag (Leuze Publishing House); 2020. p. 101-115. ISBN: 978-3-87480-364-9.
[26] Amirzada M R, Li Q, Hillmer H. Development of optical MEMS-based micromirror arrays on flexible substrate for curvilinear surfaces. Optical and Quantum Electronics 2021; 53(5):210. DOI: 10.1007/S11082-021-02846-7.
[27] Hasan M K, Löber D, Iskhandar M S Q, et al. Implementation of 2D Actuation in MEMS based Micromirror Arrays. Technical Digest 27th Microoptics Conference (MOC), 2022. p. 72-73.
[28] Hasan M K, Liebermann S, Iskhandar M S Q, et al. Personalized Light Steering in Buildings Utilizing 2D Actuation in MEMS Micromirror Arrays. 78th ed. In: Sörgel T. Jahrbuch Oberflächentechnik (Yearbook Surfacetechnology). Bad Saulgau: Leuze Verlag (Leuze Publishing House); 2022. p. 217-237. ISBN 978-3-87480-380-9.
[29] Qasim M H, Chen J, Iskhandar M S Q, et al. Advancements in Surface Modification and Coloring Technologies for MEMS-Based Smart Windows: Ultra-Thin Highly Absorbing Films and C-V Measurements of Smart Glass as Sustainable Energy Solutions. 79th ed. In: Sörgel T. Jahrbuch Oberflächentechnik (Yearbook Surfacetechnology). Bad Saulgau: Leuze Verlag (Leuze Publishing House); 2023.
[30] Speroni A, Mainini A G, Zani A, et al. Experimental Assessment of the Reflection of Solar Radiation from Façades of Tall Buildings to the Pedestrian Level. Sustainability, 2022; 14(10):5781. DOI: 10.3390/su14105781.
[31] Hillmer H. Spiegel-Shutter-Array. EU. EP21 186 451.7. Priority date: 2 Septembre 2020.
[32] Aksyuk V, Pardo F, Carr D, et al. Beam-Steering Micromirrors for Large Optical Cross-Connects. Journal of Lightwave Technology, 2003; 21(3):634-642. DOI: 10.1109/JLT.2003.811792.
[33] Lin L Y, Goldstein E L. Opportunities and challenges for MEMS in lightwave communications. IEEE Journal of Selected Topics in Quantum Electronics, 2002; 8(1):163-172. DOI: 10.1109/2944.991412.
[34] Pu C, Lin L Y, Goldstein E L, et al. Client-configurable eight-channel optical add/drop multiplexer using micromachining technology. IEEE Photonics Technology Letters, 2000; 12(12):1665-1667. DOI: 10.1109/68.896342.
[35] Duncan W M, Bartlett T, Lee B, et al. Dynamic optical filtering in DWDM systems using the DMD. Solid-State Electronics, 2002; 46(10):1583-1585, 2002. DOI: 10.1016/S0038-1101(02)00109-0.
[36] Ballard B, Bhakta V, Douglass M, et al. 5-1: Invited Paper: ‘Steering’ Light with Texas Instruments Digital Micromirror Device (DMD) - Past, Present & Future. SID International Symposium Digest of Technical Papers, 2016; 47(1):28-31. DOI: 10.1002/sdtp.10590.
[37] Manzanera S, Helmbrecht M A, Kempf C J, et al. MEMS segmented-based adaptive optics scanning laser ophthalmoscope. Biomedical Optics Express, 2011; 2(5):1204-1217. DOI: 10.1364/BOE.2.001204.
[38] Bifano T. MEMS deformable mirrors. Nature Photonics, 2011; 5(1):21-23. DOI: 10.1038/nphoton.2010.297.
[39] Doble N, Williams D R. The application of MEMS technology for adaptive optics in vision science. IEEE Journal of Selected Topics in Quantum Electronics, 2004; 10(3): 629-635. DOI: 10.1109/JSTQE.2004.829202.
[40] Zhu G, Levine J, Praly L, et al. Flatness-Based Control of Electrostatically Actuated MEMS With Application to Adaptive Optics: A Simulation Study. Journal of Microelectromechanical Systems, 2006; 15(5):1165-1174. DOI: 10.1109/JMEMS.2006.880198.
[41] Schlam E, Finch J, Koskulics J. Highly Reflective Electrostatic Shutter Display. Paper for 24th International Display Workshops (IDW'17). Sendai, 2017 December 6-8. Campbell: Society for Information Display.
[42] Ilias S, Picard F, Kruzelecky R, et al. Programmable optical microshutter arrays for large aspect ratio microslits. Proceedings of SPIE, 2008; 7099:70992D. DOI: 10.1117/12.807187.
[43] Kalt C G. Electro-static device with rolling electrode. USA. US3989357A, 1976 November 2.
[44] Kim CH, Hong S. Study on the reliability of the mechanical shutter utilizing roll actuators. Paper for 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, 501-504. Cancun, 2011 January 23-27. New York City: IEEE. DOI: 10.1109/MEMSYS.2011.5734471.
[45] Pizzi M, Koniachkine V, Nieri M, et al. Electrostatically driven film light modulators for display applications. Microsystem Technologies, 2003; 10:17-21. DOI: 10.1007/s00542-002-0244-0.
[46] Roux P, Woirgard E, Pizzi M, et al. Fem modelling of an electro-optical micro-shutter. Sensors and Actuators A: Physical, 2005; 119(1):1-7. DOI: 10.1016/j.sna.2004.06.022.
[47] Lamontagne B. The next generation of switchable glass: the micro-blinds. Paper for Conference proceedings - Glass Performance Days, 637. Tampere, 2009 June 12-15.
[48] Schalberger P, Al Nusayer S A, Raichle C. 54-1: Parallel Fabrication for Integration of Electronic and Microelectromechanical Systems. SID International Symposium Digest of Technical Papers, 2016; 47(1):731-734. DOI: 10.1002/sdtp.10737.
[49] Mori K, Misawa K, Ihida S, et al. A MEMS Electrostatic Roll-Up Window Shade Array for House Energy Management System. IEEE Photonics Technology Letters, 2016; 28(5):593-596. DOI: 10.1109/LPT.2016.2514299.
[50] Lamontagne B, Fong N R, Song I H, et al. Review of microshutters for switchable glass. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2019; 18(4):040901. DOI: 10.1117/1.JMM.18.4.040901.
[51] Goodwin-Johansson S H, Davidson M R, Dausch D E, et al. Reduced voltage artificial eyelid for protection of optical sensors. Proceedings of SPIE, 2002; 4695:451-458. DOI: 10.1117/12.475193.
[52] Langley D, Rogers S, Starman L. Fabrication studies for scaling photonic MEMS micro-shutter designs. Proceedings of SPIE, 2008; 7096:70960G. DOI: 10.1117/12.800475.
[53] Kim C H, Jung K D, Kim W. A Wafer-Level Micro Mechanical Global Shutter for a Micro Camera. 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009; pp. 156-159. DOI: 10.1109/MEMSYS.2009.4805342.
[54] Lim K S, Chung J, Yoo S, et al. P-67: Wide Bandwidth Reflective Microshutter Blind Panel for Transparent Organic Light-Emitting Diode. SID Symposium Digest of Technical Papers, 2016; 47(1):1389-1391. DOI: 10.1002/sdtp.10936.
[55] Lee K H, Chang J, Yoon J B. High performance microshutter device with space-division modulation. Journal of Micromechanics and Microengineering, 2010; 20(7):075030. DOI: 10.1088/0960-1317/20/7/075030.
[56] Al Nusayer S A, Schalberger P, Baur H, et al. 39-4: TFT Integrated Microelectromechanical Shutter for Display Application. SID International Symposium Digest of Technical Papers, 2018; 49(1):498-501. DOI: 10.1002/sdtp.12610.
[57] Gavrilyuk A I. Photochromism in WO3 thin films. Electrochim Acta, 1999; 44(18):3027-3037. DOI: 10.1016/S0013-4686(99)00017-1.
[58] Wang Y, Pan L, Li Y, et al. Hydrogen photochromism in V2O5 layers prepared by the sol–gel technology. Applied Surface Science, 2014; 314:384-391. DOI: 10.1016/J.APSUSC.2014.06.167.
[59] Granqvist C G, Lansåker P C, Mlyuka N R, et al. Progress in chromogenics: New results for electrochromic and thermochromic materials and devices. Solar Energy Materials and Solar Cells, 2009; 93(12):2032-2039. DOI: 10.1016/J.SOLMAT.2009.02.026.
[60] Mortimer R J. Electrochromic Materials. Annu Rev Mater Res, 2011; 41:241-268. DOI: 10.1146/ANNUREV-MATSCI-062910-100344.
[61] Rezaei S D, Shannigrahi S, Ramakrishna S. A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment. Solar Energy Materials and Solar Cells, 2017; 159:26-51. DOI: 10.1016/j.solmat.2016.08.026.
[62] Schrauben J N, Hayoun R, Valdez C N, et al. Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents. Science (1979), 2012; 336(6086):1298-1301. DOI: 10.1126/science.1220234.
[63] Technical Window Films. Window Tinting: The Future Of Window Films. Wimborne: Technical Window Films. Available from: https://www.technicalwindowfilms.co.uk/window-tinting-future-window-films/. [Last accessed on: 29 September 2023]
[64] Ke Y, Chen J, Lin G, Wang S, Zhou Y, Yin J, Lee P S, Long Y. Smart Windows: Electro-, Thermo-, Mechano-, Photochromics, and Beyond. Advanced Energy Materials, 2019; 9(39):1902066. DOI: 10.1002/aenm.201902066.
[65] Mahdavinejad M, Bemanian M, Khaksar N, et al. Choosing Efficient Types of Smart Windows in Tropical Region Regarding to their Advantages and Productivities. Paper for International Conference on Intelligent Building and Management, 2011; p. 335-339.
[66] Wang U. Making Smart Windows that Are Also Cheap. Cambridge: MIT Technology Review. Available from: https://www.technologyreview.com/2010/08/13/201564/making-smart-windows-that-are-also-cheap/. [Last accessed on: 20 September 2023]
[67] Gao G, Xue S, Wang H, et al. Medium-scale production of gasochromic windows by sol-gel. Journal of Sol-Gel Science and Technology volume, 2022; 106(2):331-340. DOI: 10.1007/s10971-021-05721-9.
[68] Jain A K, Deshmukh R R. An Overview of Polymer-Dispersed Liquid Crystals Composite Films and Their Applications. In: Ghamsari M S, Carlescu I. Liquid Crystals and Display Technology Rijeka, IntechOpen 2020. DOI: 10.5772/intechopen.91889.
[69] Hu X, Zhang X, Yang W, et al. Stable and scalable smart window based on polymer stabilized liquid crystals. Journal of Applied Polymer Science, 2020; 137(30):48917(1). DOI: 10.1002/app.48917.
[70] Hocheng H, Huang T Y, Chou T H, et al. Microstructural fabrication and design of sunlight guide panels of inorganic–organic hybrid material. Energy and Buildings, 2011; 43(4):1011-1019. DOI: 10.1016/j.enbuild.2010.12.027.
[71] Maiorov V A. Window Optical Microstructures (Review). Optics and Spectroscopy, 2020; 128(10):1686-1700. DOI: 10.1134/S0030400X20100185.
[72] El-Henawy S I, Mohamed M W N, Mashaly I A,et al. Illumination of dense urban areas by light redirecting panels. Optics Express, 2014; 22(S3):A895-A907. DOI: 10.1364/OE.22.00A895.
[73] Garcia-Hansen V, Edmonds I, Bell J M. Improving daylighting performance of mirrored light pipes. Paper for 26th International Conference on Passive and Low Energy Architecture: Architecture Energy and the Occupant’s Perspective, PLEA, 2009; p. 308-313.
[74] Kostro A, Geiger M, Jolissaint N, et al. Embedded microstructures for daylighting and seasonal thermal control. Proceedings, Nonimaging Optics: Efficient Design for Illumination and Solar Concentration IX, 2012; 8485:84850L. DOI: 10.1117/12.930476.
[75] Mueller H F O. Micro-optical structures for daylighting and led systems. Renewable Energy and Environmental Sustainability, 2017; 2:29. DOI: 10.1051/rees/2017044.
[76] Precedence Research. Smart Glass Market (By Technology: Electrochromic, Polymer Dispersed Liquid Crystal, Suspended Particle Devices, Thermochromics, Photochromic, Others; By Application: Architectural, Transportation, Consumer Electronics, Power Generation; By Control Mode. Ottawa: Precedence Research. Available from: https://www.precedenceresearch.com/smart-glass-market. [Last accessed on 27 September 2023].
[77] Leslie R P, Raghavan R, Howlett O, et al. The potential of simplified concepts for daylight harvesting. Lighting Research & Technology, 2005; 37(1):21-38. DOI: 10.1191/1365782805li127oa.
[78] Schwank A. Modelle und Optimierungskonzepte aktiver solarer Lenksysteme in transparenten Bauteilen: Einfluss auf Energiebedarf und Nutzungskomfort am Beispiel des Systems Mikrospiegel-Arrays [PhD Thesis]. Kassel: University of Kassel, 2015.
[79] Iskhandar M S Q. Development of Selective Actuatable Micromirror Arrays and Scalable Lithography Process for Smart Window Application [PhD Thesis]. Kassel: University of Kassel, 2022.
[80] McCluney R. Advanced Fenestration and Daylighting Systems. Technical Digest of the International conference on daylighting technologies for energy efficiency in buildings, 1998, p. 1-17.
[81] McNeil A, Lee E S, Jonsson J C. Daylight performance of a microstructured prismatic window film in deep open plan offices. Building and Environment, 2017; 113:280-297. DOI: 10.1016/j.buildenv.2016.07.019.
[82] McNeil A, Jonsson C J, Appelfeld D, et al. A validation of a ray-tracing tool used to generate bi-directional scattering distribution functions for complex fenestration systems. Solar Energy, 2013; 98:404-414. DOI: 10.1016/j.solener.2013.09.032.
[83] Klems J H. A New Method for Predicting the Solar Heat Gain of Complex Fenestration Systems I. Overview and Derivation of the Matrix Layer Calculation. ASHRAE Trans, 1993; 100(1):1-17.
[84] Larson G W, Shakespeare R. Rendering with radiance: the art and science of lighting visualization. San Francisco, CA, USA: Morgan Kaufmann Publishers; 1998.
[85] Ward G J, Wang T, Geisler-Moroder D, et al. Modeling specular transmission of complex fenestration systems with data-driven BSDFs. Building and Environment, 2021; 196:107774. DOI: 10.1016/J.BUILDENV.2021.107774.
[86] McNeel R. Rhinoceros 3D. Robert McNeel Associates. Seattle, WA, USA, 2010.
[87] David R, McNeel R. Grasshopper 3D. Robert McNeel Associates. Seattle, WA, USA, 2007.
[88] Larouche S, Martinu L. OpenFilters: open-source software for the design, optimization, and synthesis of optical filters. Applied Optics, 2008; 47(13):C219-C230. DOI: 10.1364/AO.47.00C219.
[89] Curcija D C, Zhu L, Czarnecki S, et al. Berkeley Lab WINDOW. Computer Software. 2015. DOI: 10.11578/dc.20210416.62.
[90] Haynes W M. CRC Handbook of Chemistry and Physics, 97th ed. Boca Raton: CRC Press; 2016.
[91] El-Mahallawy N, Atia M R A, Khaled A, et al. Design and simulation of different multilayer solar selective coatings for solar thermal applications. Materials Research Express, 2018; 5(4):046402. DOI: 10.1088/2053-1591/aab871.
[92] Mitchell R, Kohler C, Curcija D, et al. WINDOW 7 User Manual. Berkeley: Lawrence Berkeley National Laboratory. Available from: https://windows.lbl.gov/sites/default/files/software/WINDOW/WINDOW7UserManual.pdf. [Last accessed on 22. September 2023]
[93] Mostapha S R, Pak M. Ladybug: A Parametric Environmental Plugin for Grasshopper to Help Designers Create an Environmentally-Conscious Design. Proceedings of BS 2013: 13th Conference of the International Building Performance Simulation Association, 2013; pp. 3128-3135.
[94] Statistische Bundesamt. Data on energy price trends. Wiesbaden: Statistische Bundesamt. Aviable from: https://www.destatis.de/EN/Themes/Economy/Prices/Publications/Downloads-Energy-Price-Trends/energy-price-trends-pdf-5619002.html. [Last accessed on 29. September 2023]
[95] Pernigotto G, Prada A, Gasparella A, et al. Analysis and improvement of the representativeness of EN ISO 15927-4 reference years for building energy simulation. Journal of Building Performance Simulation, 2014; 7(6):391-410. DOI: 10.1080/19401493.2013.853840
[96] Kalogirou S A. Solar Energy Engineering: Processes and Systems. Oxford: Academic Press, 2014. DOI: 10.1016/B978-0-12-374501-9.X0001-5.
[97] Pasini I. Daylighting guide for Canadian commercial buildings. Ontario: Travaux Publics et Services Gouvernementaux, 2022., p. 34. Available from: http://www.tboake.com/powerpoint/daylighting_canada.pdf. [Last accessed on 28 September 2023]
[98] Ginthner D D. Lighting: Its Effect on People. Implications: A Newsletter by InformeDesign. A Web site for design and human behavior research, 2003; 2(2).
[99] Hérbert M. Reflection and transmission of light by a flat interface, Fresnel’s formulae [PhD Thesis]. Paris: Université Paris-Saclay Institut d'Optique, 2013.
[100] Joint Research Center. PVGIS online tool. Brussels: Joint Research Center. Available from: https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis_en. [Last accessed on: 29 September 2023]
[101] Deutscher Wetterdienst, Bundesamt für Bauwesen und Raumordnung (eds.). Handbuch: Ortsgenaue Testreferenzjahre von Deutschland für mittlere, extreme und zukünftige Witterungsverhältnisse, Offenbach, 2017.
[102] Deutscher Wetterdienst, „Testreferenzjahre (TRY),“ [Online]. Available from: https://www.bbsr.bund.de/BBSR/DE/forschung/programme/zb/Auftragsforschung/5EnergieKlimaBauen/2013/testreferenzjahre/01-start.html;jsessionid=5D9912D230EB887C1F831671303A8A0F.live21304?nn=2544408&pos=2. [Last accessed on 29 September 2023]
[103] McNeil A, Lee E S. Annual daylighting performance of a passive optical light shelf in sidelit perimeter zones of commercial buildings. Berkeley, CA: Lawrence Berkeley National Laboratory. Available from: https://eta-publications.lbl.gov/sites/default/files/passive_optical_light_shelf.pdf. [Last accessed on 22 December 2023]
[104] Zhou Y, Wang S, Peng J, Tan Y, Li C, Boey F Y C, Long Y. Liquid thermo-responsive smart window derived from hydrogel. Joule, 2020; 4(11):2458-2474. DOI: 10.1016/j.joule.2020.09.001.
[105] Zhou C, Li D, Tan Y, et al. 3D printed smart windows for adaptive solar modulations. Advanced Optical Materials, 2020; 8(11):2000013. DOI: 10.1002/adom.202000013.
[106] Wang S, Jiang T, Meng Y, et al. Scalable thermochromic smart windows with passive radiative cooling regulation. Science, 2021; 374(6574):1501-1504. DOI: 10.1126/science.abg0291.
[107] Hoffmann S, Lee E S, Clavero C. Examination of the technical potential of near-infrared switching thermochromic windows for commercial building applications. Solar Energy Materials and Solar Cells, 2014; 123:65-80. DOI: 10.1016/j.solmat.2013.12.017.
[108] Wang Y, Lin M, Xu K, et al. Energy consumption analysis of glass house using electrochromic window in the subtropical region. Journal of Engineering, Design and Technology, 2021; 19:203-218. DOI: 10.1108/JEDT-12-2019-0348.
[109] Alghamdi H, Almawgani A H M. Smart and Efficient Energy Saving System Using PDLC Glass. Paper for Smart City Symposium Prague (SCSP); 1-5. Prague, 2019 May 23-24. IEEE. DOI: 10.1109/SCSP.2019.8805731.
[110] Padiyath R. Daylight Redirecting Window Film ESTCP Project No.: EW-201014 Cost and Performance Report. Washington, DC, U. S. Department of Defense. Available from: https://serdp-estcp-storage.s3.us-gov-west-1.amazonaws.com/s3fs-public/project_documents/EW-201014-CP.pdf?VersionId=UDaDVnS8_hVDPImpZ4PaNwDPxmwxBs07. [Last accessed on 22. December 2023]
[111] Vlachokostas A, Madamopoulos N. Daylight and thermal harvesting performance evaluation of a liquid filled prismatic façade using the Radiance five-phase method and EnergyPlus. Building and Environment, 2017; 126:396-409. DOI: 10.1016/j.buildenv.2017.10.017.
[112] Ghosh A, Norton B. Durability of switching behaviour after outdoor exposure for a suspended particle device switchable glazing. Solar Energy Materials and Solar Cells, 2017; 163:178-184. DOI: 10.1016/j.solmat.2017.01.036.
[113] Deshmukh R R, Malik M K.. Effect of temperature on the optical and electro‐optical properties of poly(methyl methacrylate)/E7 polymer‐dispersed liquid crystal composites. Journal of Applied Polymer Science, 2008; 109(1):627-637. DOI: 10.1002/app.27933.
[114] Korner W, Scheller H, Beck A, Fricke J. PDLC films for control of light transmission. Journal of Physics D: Applied Physics, 1994; 27(10):2145-2151. DOI: 10.1088/0022-3727/27/10/023.
[115] IQ Glass. Electrochromic glass. Available from: https://www.iqglassuk.com/products/electrochromic-glass/s62640/. [Last accessed on 10 December 2023]
[116] SageGlass. Resources. Available from: https://www.sageglass.com/resources/brochures. [Last accessed on 10 December 2023]
[117] Smart Films. Electrochromic glass: Smart films international. Available from: https://www.smartfilmsinternational.com/electrochromic-glass. [Last accessed on 11 December 2023]
[118] Chromogenics. Solar Control On Demand! - dynamic glass - chromogenics AB. Available from: https://chromogenics.com/dynamic-glass/. [Last accessed on10 December 2023]
[119] Miru. Miru Sky. Available from: https://mirucorp.com/products/miru-sky/. [Last accessed on 10 December 2023]
[120] View Dynamic Glass. Smart windows for smart buildings | view smart windows. Available from: https://view.com/sites/default/files/documents/product-guide.pdf. [Last accessed on 10 December 2023]
[121] Finnglass. Electrochromic Smart Glass. Available from: https://www.finnglass.com/uploads/3kdjilFz/FinnglassElectrochromicSmartGlassweb.pdf. [Last accessed on 10 December 2023]
[122] Aleo F, Pennisi A, Scalia S, Simone F. Optical and energetic performances of an electrochromic window tested in a “PASSYS” cell. Electrochimica Acta, 2001; 46(13-14):2243-2249. DOI: 10.1016/s0013-4686(01)00367-x.
[123] Ding Glass Tech. Smart switchable glass: Electric switchable glass: PDLC Smart glass. Available from: https://dingglass.com/smart/. [Last accessed on 11 December 2023].
[124] Shaik S, Nundy S, Maduru V R, Ghosh A, Afzal A. Polymer dispersed liquid crystal retrofitted smart switchable glazing: Energy saving, diurnal illumination, and CO2 mitigation prospective. Journal of Cleaner Production, 2022; 350:131444. DOI: 10.1016/j.jclepro.2022.131444.
[125] Gauzy. Smart glass: Switchable glass: Electric glass. Available from: https://www.gauzy.com/pdlc-smart-glass/ [Last accessed on 11 December 2023]
[126] Haozhi Nano. Switchable smart glass. Available on: https://www.haozhismartfilm.com/product/switchable-smart-glass. [Last accessed on 11 December 2023]
[127] Smart Privacy Glass. Smart switchable glass. Available from: https://www.smartprivacyglass.net/products/smart-glass. [Last accessed on 11 December 2023]
[128] Glassolutions. Privacy glass - priva-lite. Available from: https://glassolutions.co.uk/en-gb/products/priva-lite-privacy-glass [Last accessed on 11 December 2023]
[129] SMART GLASS. Laminated switchable smart glass: Instant privacy. Available from: https://www.wglass.net/product/laminated-switchable-smart-glass/. [Last accessed on 11 December 2023]
[130] Smart Glass Technologies. Priwatt Glass. Available from: https://www.smartglasstech.us/priwatt-glass/. [Last accessed on 11 December 2023]
[131] Intelligent Glass. Toughened switchable smart glass. Available from: https://intelligentglass.net/products/toughened-switchable-smart-glass/. [Last accessed on 11 December 2023]
[132] Smartglass International. Privacy SmartglassTM Technical Handbook. Available from: https://www.smartglassinternational.com/wp-content/uploads/2022/08/UK-Tech-Guide.pdf. [Last accessed on 11 December 2023]
[133] Asahi India Glass. Swytchglas. Available from: https://www.aisglass.com/wp-content/uploads/2021/02/829_AIS_Swytchglass_brochure_19-08-2020.pdf. [Last accessed on: 11 December 2023]
[134] Singyes New Materials Technology. Laminated smart glass. Available from: https://en.syeamt.com/product/182.html. [Last accessed on 11 December 2023]
[135] Switchglass. Switchglass panels Fact Sheet. Available from: https://www.switchglass.com.au/wp-content/uploads/2018/04/How-to-Specify.pdf. [Last accessed on 11 December 2023]
[136] Polytronix Privacy Glass. Polyvision Specifications. Available from: https://polytronixglass.com/products/polyvision/polyvision-specifications/. [Last accessed on 10 December 2023]
[137] Smart Films. Smart glass: Smart films international. Available from: https://www.smartfilmsinternational.com/. [Last accessed on 11 December 2023]
[138] Ghosh A, Norton B, Duffy A. Daylighting performance and glare calculation of a suspended particle device switchable glazing. Solar Energy, 2016; 132:114-128. DOI: 10.1016/j.solener.2016.02.051.
[139] Smart Glass. Products. Available from: https://www.smartglass.com/products/#Museum-SPD. [Last accessed on 10 December 2023]
[140] Ghosh A, Norton B, Duffy A. First outdoor characterisation of a PV powered suspended particle device switchable glazing. Solar Energy Materials and Solar Cells, 2016; 157:1-9. DOI: 10.1016/j.solmat.2016.05.013.
[141] Mesloub A, Ghosh A, Touahmia M, Albaqawy G A, Alsolami B M, Ahriz A Assessment of the overall energy performance of an SPD smart window in a hot desert climate. Energy, 2022; 252:124073. DOI: 10.1016/j.energy.2022.124073.
[142] Gauzy. Gauzy SPD and Automotive Applications. Available from: https://www.gauzy.com/wp-content/uploads/2019/07/gauzy-spd-auto-and-architecture.pdf. [Last accessed on 10 December 2023]
[143] Smartglass Innetrnational. Solar Smartglass Technical Handbook. Available from: https://www.smartglassinternational.com/wp-content/uploads/2021/09/Solar-Smartglass-Technical-Handbook-Ver-2.1.pdf. [Last accessed on 10 December 2023]
[144] Nash F R, Joyce W B, Hartman R L, Gordon E I, Dixon R W. Selection of a Laser Reliability Assurance Strategy for a Long-Life Application. AT&T Technical Journal, 1985; 64(3):671-715. DOI:10.1002/j.1538-7305.1985.tb00445.x.
[145] Philips K. Vibrationsbeständigkeit. Available from: https://www.philips.de/p-m-au/fahrzeugbeleuchtung/services/vibrations-bestandigkeit. [Last accessed on 27 June 2019]
[146] Külz U. Grundlagen: Vibrationen und deren Dämpfung. Available from: http://www.hwlscientific.com/download/Basics/HWL-Grundlagen.pdf.
[Last accessed on 27 June 2019]
[147] Hillmer H, Daleiden J, Prott C, Römer F, Irmer S, Rangelov V, Tarraf A, Schüler S, Strassner M. Potential for micromachined actuation of ultra-wide continuously tunable optoelectronic devices. Applied Physics B: Lasers and Optics, 2022; 75:3-13. DOI: 10.1007/s00340-002-0957-x.

Copyright © 2024 Hartmut Hillmer, Dennis Loeber, Md Kamrul Hasan, Steffen Liebermann, Mustaqim Siddi Que Iskhandar, Shilby Baby, Shujie Liu, Basma Elsaka, Jiahao Chen, Muhammad Hasnain Qasim, Guilin Xu Creative Commons License Publishing time:2023-08-08
This work is licensed under a Creative Commons Attribution 4.0 International License