基于Comsol的径向电磁轴承设计分析系统开发
祝丽莎 ( 成都四威高科技产业园有限公司 )
王小虎 ( 西南石油大学 )
Abstract
电磁轴承的结构设计受到安装空间、软磁材料性能、线圈绕组结构等多种因素限制。在实际应用中,要设计出达到承载力目标而又满足各类限制的电磁轴承结构往往需要通过大量计算获得关键参数,建立电磁轴承虚拟样机,再利用仿真分析等手段验证设计参数是否合理,整个流程往往需要多次迭代,设计效率较低。基于Comsol软件,开发了一套针对径向电磁轴承的自动设计及分析系统。本系统可以依据输入的承载力目标和边界条件,自动完成参数计算、几何模型生成和有限元仿真计算,有利于快速获得设计结果并进行评估,极大地提高了设计效率,同时降低了设计人员的工作量,有利于快速确定电磁轴承的结构方案。
Keywords
电磁轴承; 设计; 分析; 系统开发Full Text
PDFReferences
[1] KEJIAN J, CHANGSHENG Z, MING T. A Uniform Control Method for Imbalance Compensation and Automation Balancing in Active Magnetic Bearing-Rotor Systems[J/OL]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(2): 021006. http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1415226. DOI:10.1115/1.4005279.
[2] CHEN Q, LIU G, HAN B. Unbalance vibration suppression for AMBs system using adaptive notch filter[J/OL]. Mechanical Systems and Signal Processing, 2017, 93: 136–150. http://dx.doi.org/10.1016/j.ymssp.2017.02.009. DOI:10.1016/j.ymssp.2017.02.009.
[3] ZHANG Y. Active magnetic bearing system based on sliding mode control[J]. Modern Physics Letters B, 2017, 31(19–21): 1–5. DOI:10.1142/S0217984917400139.
[4] LI Q, WANG W, WEAVER B, BRAIN. Active rotordynamic stability control by use of a combined active magnetic bearing and hole pattern seal component for back-to-back centrifugal compressors[J/OL]. Mechanism and Machine Theory, 2018, 127: 1–12. https://doi.org/10.1016/j.mechmachtheory.2018.04.018. DOI:10.1016/j.mechmachtheory.2018.04.018.
[5] SCHWEIZER G, MASLEN E H. Magnetic Bearings Theory, Design, and Application to Rotating Machinery[M/OL]. MASLEN E H, SCHWEITZER G, 编//Spring. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://link.springer.com/10.1007/978-3-642-00497-1. DOI:10.1007/978-3-642-00497-1.
[6] 王小虎,鄢光荣,胡瑶尧,唐瑞.Alford力和磁悬浮轴承对转子系统动力学特性的影响[J].振动与冲击, 2020,39(8):222-229.DOI:10.13465/j.cnki.jvs.2020.08.032.
[7] 占智军.主动电磁轴承的设计与分析[D].浙江大学, 2013.
[8] 张赓.磁力轴承用数字功率放大器的研究[D].武汉理工大学, 2013.
[2] CHEN Q, LIU G, HAN B. Unbalance vibration suppression for AMBs system using adaptive notch filter[J/OL]. Mechanical Systems and Signal Processing, 2017, 93: 136–150. http://dx.doi.org/10.1016/j.ymssp.2017.02.009. DOI:10.1016/j.ymssp.2017.02.009.
[3] ZHANG Y. Active magnetic bearing system based on sliding mode control[J]. Modern Physics Letters B, 2017, 31(19–21): 1–5. DOI:10.1142/S0217984917400139.
[4] LI Q, WANG W, WEAVER B, BRAIN. Active rotordynamic stability control by use of a combined active magnetic bearing and hole pattern seal component for back-to-back centrifugal compressors[J/OL]. Mechanism and Machine Theory, 2018, 127: 1–12. https://doi.org/10.1016/j.mechmachtheory.2018.04.018. DOI:10.1016/j.mechmachtheory.2018.04.018.
[5] SCHWEIZER G, MASLEN E H. Magnetic Bearings Theory, Design, and Application to Rotating Machinery[M/OL]. MASLEN E H, SCHWEITZER G, 编//Spring. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://link.springer.com/10.1007/978-3-642-00497-1. DOI:10.1007/978-3-642-00497-1.
[6] 王小虎,鄢光荣,胡瑶尧,唐瑞.Alford力和磁悬浮轴承对转子系统动力学特性的影响[J].振动与冲击, 2020,39(8):222-229.DOI:10.13465/j.cnki.jvs.2020.08.032.
[7] 占智军.主动电磁轴承的设计与分析[D].浙江大学, 2013.
[8] 张赓.磁力轴承用数字功率放大器的研究[D].武汉理工大学, 2013.
Copyright © 2021 祝丽莎, 王小虎 Publishing time:2021-03-31
This work is licensed under a Creative Commons Attribution 4.0 International License