大模型驱动下师范生技能培养的机遇与挑战
付 妍 ( 扬州大学新闻与传媒学院 )
杨 璐 ( 扬州大学新闻与传媒学院 )
黄小华 ( 萍乡中学 )
张盼盼* ( 扬州大学新闻与传媒学院 )
https://doi.org/10.37155/2717-5561-0602-37Abstract
随着大模型技术的迅速发展,教育领域迎来了前所未有的变革,尤其是在师范生技能培养方面。首先, 个性化学习和智能辅导系统的引入为师范生提供了定制化的学习内容,极大地提升了学习效果和效率。其次,虚拟实 验室和模拟教学环境的应用为师范生提供了丰富的实践机会,帮助他们积累教学经验,提升实践能力。此外,智能化 教学资源的生成和优化使得师范生可以获取全球最新的教育研究成果和案例,拓宽了其视野。然而,随着大模型技术 的普及,师范生技能培养也面临着诸多挑战。技术适应性问题、数据隐私与伦理问题以及教育资源的不均衡分配是当 前亟需解决的难题。部分师范生可能对新技术的使用存在障碍,需要额外的培训和支持。同时,数据安全和隐私保护 也成为技术应用中的关键问题。本文旨在通过分析这些机遇与挑战,为教育实践者和政策制定者提供理论支持与实践 建议,以促进大模型技术在师范生技能培养中的有效应用。
Keywords
大模型;师范生;技能培养Full Text
PDFReferences
J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models
are few-shot learners. arXiv preprint arXiv:2005.14165.
[2] Collins, A., Brown, J. S., & Newman, S. E. (2021).
Cognitive apprenticeship: Teaching the crafts of reading,
writing, and mathematics. Learning by Doing: A Handbook
for Professional Communities at Work, 85-100.
[3] Li, J., Zhou, Y., & Wang, L. (2021). Enhancing
teaching effectiveness with AI: Case studies and best practices.
Educational Technology & Society, 24(4), 123-134. [4]
[4] Smith, M., Jones, P., & Taylor, R. (2021). Adapting
to new technologies in teacher education: Challenges and
solutions. Journal of Teacher Education and Training, 30(3),
210-225.
[5] Kumar, S., & Gupta, R. (2022). Ethical implications
of AI in education: Privacy, equity, and beyond. International
Journal of Ethics in Education, 5(1), 45-60.
[6] Chen, H., Liu, Y., & Zhang, X. (2023). Bridging
the digital divide: Challenges and strategies in educational
technology resource allocation. Journal of Educational
Technology Development and Exchange, 16(2), 78-93.
Copyright © 2025 付 妍,杨 璐,黄小华,张盼盼*

This work is licensed under a Creative Commons Attribution 4.0 International License