基于PM-UNet的腹部肝脏分割网络
王智信 ( 北方工业大学 信息学院 )
https://doi.org/10.37155/2717-5669-0601-19Abstract
传统卷积神经网络在捕捉全局上下文信息和多尺度特征提取上存在局限,容易忽视重要特征。为此,提 出一种结合并行注意力和多尺度卷积交叉融合的网络。并行注意力机制有效捕捉全局信息和通道关系,抑制无关特 征;多尺度卷积模块通过不同感受野融合特征,增强表达能力。实验结果表明,该方法在3DIRCADb数据集上显著优 于现有分割网络,分割结果更接近真实值。
Keywords
深度学习;肝脏分割Full Text
PDFReferences
[1] Jiang, Chun, et al. "Radiomics in the diagnosis and
treatment of hepatocellular carcinoma". Hepatobiliary &
Pancreatic Diseases International 22(4) , 346-351(2023).
[2] Long J, Shelhamer E, Darrell T. Fully convolutional
networks for semantic segmentation[C]//Proceedings
of the IEEE conference on computer vision and pattern
recognition(CVPR).Boston:IEEE, 2015: 3431-3440.
[3] Ronneberger O, Fischer P, Brox T. U-net:
Convolutional networks for biomedical image segmentation
[C]//Medical Image Computing and Computer-Assisted
Intervention– MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18. Springer International Publishing, 2015: 234-241.
[4] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N,
et al. UNet++: a nested U-Net architecture for medical image
segmentation[J]. Deep Learning in Medical Image Analysis
and Multimodal Learning for Clinical Decision Support,
2018, 11045: 3-11.
[5] Oktay O, Schlemper J, Folgoc LL, et al.
Attention U-Net:Learning where to look for the pancreas.
arXiv:1804.03999,2018.
[6] ZHANG J X,JIANG Z K,DONG J,et al.Attention
gate resu-net for automatic MRI brain tumor segmentation[J].
IEEE Access,2020,8:58533-58545.
[7] Alom MZ, Yakopcic C, Hasan M, et al. Recurrent
residual U-Net for medical image segmentation[J]. J Med
Imaging (Bellingham), 2019, 6(1): 014006.
[8] Chen J,Lu Y,Yu Q,et al.Transunet:Transformers make
strong encoders for medical image segmentation[J].arXiv
preprint arXiv:2102.04306, 2021.
treatment of hepatocellular carcinoma". Hepatobiliary &
Pancreatic Diseases International 22(4) , 346-351(2023).
[2] Long J, Shelhamer E, Darrell T. Fully convolutional
networks for semantic segmentation[C]//Proceedings
of the IEEE conference on computer vision and pattern
recognition(CVPR).Boston:IEEE, 2015: 3431-3440.
[3] Ronneberger O, Fischer P, Brox T. U-net:
Convolutional networks for biomedical image segmentation
[C]//Medical Image Computing and Computer-Assisted
Intervention– MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18. Springer International Publishing, 2015: 234-241.
[4] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N,
et al. UNet++: a nested U-Net architecture for medical image
segmentation[J]. Deep Learning in Medical Image Analysis
and Multimodal Learning for Clinical Decision Support,
2018, 11045: 3-11.
[5] Oktay O, Schlemper J, Folgoc LL, et al.
Attention U-Net:Learning where to look for the pancreas.
arXiv:1804.03999,2018.
[6] ZHANG J X,JIANG Z K,DONG J,et al.Attention
gate resu-net for automatic MRI brain tumor segmentation[J].
IEEE Access,2020,8:58533-58545.
[7] Alom MZ, Yakopcic C, Hasan M, et al. Recurrent
residual U-Net for medical image segmentation[J]. J Med
Imaging (Bellingham), 2019, 6(1): 014006.
[8] Chen J,Lu Y,Yu Q,et al.Transunet:Transformers make
strong encoders for medical image segmentation[J].arXiv
preprint arXiv:2102.04306, 2021.
Copyright © 2025 王智信

This work is licensed under a Creative Commons Attribution 4.0 International License